
I

w

w

i

The Nondeterministic Divide

Arthur Charlesworth

IPC-TR-90-005

November 30, 1990

Institute for Parallel Computation

School of Engineering and Applied Science

University of Virginia

Charlottesville, VA 22903

and

Department of Mathematics and Computer Science

University of Richmond

Richmond, VA 23173

This research was supported by the National Aeronautics and Space

Administration, under grant number NAG-I-774, by the Jet Propul-

sion Laboratory, under grant number 95722, and by sabbatical fund-

ing from the University of Richmond.

m

J

maid

Y

i

,iw

I

i

at

i

HI

i

m

i •

w

The Nondeterministic Divide

Arthur Charlesworth

University of Richmond and University of Virginia

ABSTRACT: The noadeterministic divide partitions a vector into two non-

empty slices by allowing the point of division to be chosen nondeterministically.

Support for high-level divide-and-conquer programming provided by the non-

deterministic divide is investigated. A diva algorithm is a recursive divide-and-

conquer sequential algorithm on one or more vectors of the same range, whose

division point for a new pair of recursive calls is chosen nondeterministically

before any computation is performed and whose recursive calls are made im-

mediately after the choice of division point; also, access to vector components

is only permitted during activations in which the vector parameters have unit

length. The notion of a diva algorithm is formulated precisely as a diva call,
a restricted call on a sequential procedure. Diva calls are proven to be inti-

mately related to associativity. Numerous applications of diva calls are given

and strategies are described for translating a diva call into code for a variety of
parallel computers. Thus diva algorithms separate logical correctness concerns

from implementation concerns.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Con-

current Programming; D.3.3 [Programming Languages]: Language Constructs

General Terms: Languages

Additional Key Words and Phrases: Divide-and-conquer, nondeterminism, re-

cursion, parallel programming, associativity, reduction.

E •

m

il

ii

m
mm

m
II

IW

m

II

m

Ill

mp :

ml

Ill

I F

__ Z

I

m

m _

R

m

Contents

1 INTRODUCTION

2 THE NONDETERMINISTIC DIVIDE

3 DIVA CALLS

4 EXAMPLES

5 VERIFICATION OF DIVA CALLS

6

7

8

9 COMPARISON WITH REDUCTION OPERATORS

10 CONCLUSIONS

REFERENCES

1

3

7

10

18

DIVA PROCEDURES AND ASSOCIATIVITY 21

6.1 Characterizing Associativity 21
6.2 Proving Associativity 24

SEQUENTIAL IMPLEMENTATION OF DIVA CALLS 26

PARALLEL IMPLEMENTATION OF DIVA CALLS 32

8.1 Translation for MIMD Shared Memory Computers 33

8.2 Translation for Distributed Memory 39

8.3 Translation for SIMD Computers 40

8.4 The Independence of Logical Correctness from Implementation
Details 41

43

49

51

I

um

mR

m

J

z

I

i

I

I

__ =

!

Ill

m

II

D

1 INTRODUCTION

The architecture of computers, once restricted to having a single processor for
the execution of instructions, is rapidly evolving in diverse directions. Recent

multiple instruction stream, multiple data stream (MIMD) computers have from
a few tens of processors that use a common bus for accessing shared memory 1

to a few hundred processors that employ a more sophisticated interconnection

network between processors and memory. 2 Current distributed memory MIMD

computers have from the low hundreds to a thousand processors, a while the

number of fine-grained processors in current single instruction stream, multi-
ple data stream (SIMD) machines is in the tens of thousands. 4 Hybrids of

approaches are also appearing, such as architectures that combine both the

MIMD and SIMD approach [Dung0] and the use of a pool of processors by a

system of workstations to perform tasks requiring multiple processors [MT86].

Even a wide-area network of heterogeneous workstations may be viewed as a

single distributed computing system [BST89].
A paramount question is how such diverse computers, and computers result-

ing from additional evolution, should be programmed. As always with software,

program correctness is a key issue. Other significant considerations include sup-

port for abstraction, the cost of software development and maintenance, ease
of portability, and, when translation is by compilation, the efficiency of the

compiler and the efficiency of the resulting object code.
Among the most efficiently implementable operations involving the partic-

ipation of multiple processes are the associative operations, since partial com-

putations of associative operations can be combined using a variety of efficient

techniques, such as read/modify/write on MIMD shared memory machines, pro-
cessor trees on MIMD hypercubes, anti shifts or pointer d0ubiing on SIMD
machines. For this reason, support for computing reductions of vectors using

standard associative functions, such as ÷, *, and, or, max, and rain, is com-

monly provided within languages for parallel computing) Support for using

less trivial programmer-defined associative functions in computing reductions
of vectors is also provided in several languages for parallel computing, such as

iPSC/2 Fortran and C lint89] and the innovative and less conventional lan-

guages Connection Machine Lisp [STI86] and Paralation Lisp [Sab88]. Within
conventional semantic models, the level of abstraction provided by such gen-

eral reduction operators is less than ideal when nontrivial programmer-defined
functions are used. This is due to such deficiencies as the lack of a simple,

implementation-independent conceptualization for the combining of function

values, the difficulty of showing that a nontrivial function is associative in the

1e.g., Sequent Symmetry, Encore Multimax
ae.g., BBN Butterfly, IBM RP3
ae.g., Intel iPSC/2, NCube/lO
%.g., Connection Machine, MassPar MP-1
5Language support for reductions was provided much earlier by APL [Ire62].

N

absence of a suitable conceptualization, the fact that the language form for ex-

pressing a general reduction operator does not make underlying assumptions

clear to the programmer, the fact that information known at the programmer's
level of abstraction must be withheld sometimes from compilers and syntax-

directed editors even though such information could be used to uncover errors,

and the frequent necessity of using records to combine variables into a single

object regardless of whether such use of records is a natural and appropriate
abstraction. It is unnatural to include the requirement of associativity in the

specification of a function, Since-_n the context-of-such-a-specification the func-

tion operates on just two values. Finally, additional applications are possible if

the associativity requirement is generalized to a requirement that the function

simply be associative relative to the sequences of interest; this generalizat_js

also efficiently implementable, yet such a more general requirement is even less

natural to include in the specification of the function.

A leading strategy for programming both sequential and parallel computers
is the divide-and-conquer approach, which can generally reduce the conceptual

complexity of a problem. On parallel computers there can be a significant per-

formance advantage to the divide-and-conquer approach, when different parts
of=t]_e_l_t_on::can be compu_T-d-n-_iTerentp_r\oc_or_s- -__:_::_: :: _ _ "
" In this paper a restricted form of divide-and-conquer sequential algorithm

is shown to have the major implementation advantages of general reduction

operators, due to an intimate relationship between such an Sg_orithm _d as-

sociativity. Yet, with suitable syntactic support, such an algorithm is shown to
be free of the undesirable features of general reduction operators and thereby

to enhance program correctness and abstraction. In addition, unlike general re-

duction operators, such an an algorithm can be used to assign computed values

to the components of a vector:

z
I

m

I

I

r=

E

m
m

[]
m

m_

!

I

I

g

t

m

m.

m

2 THE NONDETER, MINISTIC DIVIDE

Turning to the foreigner who wanted to be his new aide, the king
remarked: _Your trial task is to devise a strategy that my workers can

use to find the exact weight of wood in this worn-out scepter, since

I plan to replace it as quickly as possible with a gold one having

precisely the same weight. Built into niches of each room of this

castle are balancing scales sensitive enough to weigh at least one

small diamond. I will not tell you their various capacities, except to

say that this scepter greatly exceeds the capacity of any single scale."

Immediately the candidate responded: "I was given a similar task

in my previous homeland and the strategy I developed there will work
here as well: Break the scepter into two pieces. Each piece is now

like the original wood, so keep breaking wood into two pieces until

each piece of wood can be weighed on a scale. Add all the weights
obtained. There iS no need for me to specify where each piece of

wood is to be broken; Such de_ci-s-i6ns can be made by your workers

based on the various capacities of the scales. Clearly this weighing

strategy is correct regardless of how such decisions are made."

The nondeterministic divide partitions a vector into two nonempty shoes 6

by allowing the point of division to be chosen nondeterministically; that is, the

point of division is not specified by the language or the programmer. A diva

algorithm is a recursive divide-and-conquer sequential algorithm on one or more
vectors of the same range, whose division point for a new pair of recursive calls

is chosen nondeterministically before any computation is performed and whose
recursive calls are made immediately after the choice of division point; also,

access to vector components is only permitted during activations in which the

vector parameters have unit length.

The following ideas form the basis for this paper:

1. The semantics of a diva algorithm are natural and easy for the sequential

programmer to understand.

2. An algorithm that has been demonstrated to be diva can be executed

in time proportional to log n, where n is the length of the vectors used

as input by the algorithml if the computation within a single activation

takes constant time and parameter passing takes constant time. This can

be accomplished by implementing the nondeterministic divide as a divide

at the middle of a vector and letting multiple processors use a binary

combining tree to share in the computation of the algorithm.

3. The nondeterministic divide can be implemented as a divide just before

the: last Component of a vector (or just alter the first component) thereby

6A slice of a vector is a sequence of consecutive components of the vector [Uni83].

u

yielding a sequential loop. Such a loop is often more efficient than the use

of recursion to implement a diva algorithm on a sequential computer. Thus
during a single use: ofa d_vaa]gor_thml some of the recurslve activations

- such as those near the beginning of execution of the algorithm - can
be carried out in parallel and the rest can be implemented sequentially

without the overhead o_erecurs_ve calls. This facilitates an implementation

in which processors do some of the work on the algorithm independently

and then combine their partial results. If the divide were defined to he a

deterministic divide a(the middle, an imp]ementation using a sequentiai

loop (without a stack) would not be possible, in general.

4. By requiring that a programmer use restricted syntax, which we refer to
as a diva call, to describe a diva algorithm, the demonstration mentioned

in 2 can be performed by a Syntax'directed editor or a compiler.

5. The nondeterm_nisfic d]vlde iS fully c0nsistent :.vit_ the-strbn-g - induction
naturally use_]n verify_ng a=recursive algorithm_ For this reason diva

algorithms are relatively easy to verify.

6. The associativity of a function can be proven to be equivalent to the

assertion that a div_ca]l naturally related to thei"unction returns a unique

value. As mentioned earlier, the associativity of a function is intimately

related to the efficiency of implementing operations involving the function

on parallel computers.: :_ ; :

7. Additional applications are possible if the associativity requirement is

weakened to a requirement that the function be _Qciativ_ relative to the
sequences of interest: This generalization is also efficiently implementable,

and is equivalent to the assertion that a diva call naturally related to the

function returns a unique value when the vectors used as input by the diva
call satisfy certain properties.

8. Since there are n - I choices for division point in an n-element vector, the

nondeterministic divide can be implemented so that tolerance for faults in

channels on a parallel computer is provided.

9. Using a natural choice of syntax for a diva algorith_m :=h_the effect of

abstracting away issues that ar e irrelevant to the logical co-rrectness of the
algorithm in question. Such issues include whether a loop will be used for

sequential implementation, whether parallelism will be used to implement

the alg0ri-thm and,_fso, w hetl_er _Iist.r|b_(ed or sh_red m_iribry will be
used, whether the target computer is MIMD or SIMD, whether processors

will do some of the combining work independently before combining their

partial results, and what technique will be used in combining partial re-
Suits from different processors (a combining tree of processors, left or right

shifts, pointer doubling, or other technique). As the parable of the scales

II

m

m

l

I

m

I

II

I

zm
lib

m

I

im

mmm
!
l

II

!
il

Ill _

w

suggests, such issues also include whether the parallel computer used has

heterogeneous processors and, if so, what their respective capabilities are.

The resulting high-level syntax results in code that is more portable and
easier to read, write, and verify than approaches failing to abstract away
such details.

i0. Diva calls can be used to perform a variety of computations. A few of the

many examples discussed in this paper are: assigning computed values to a

vector using corresponding values of other vectors, computing a reduction

of a vector using an associative operation, computing the number of runs

in a vector, computing the maximum sum among the nonempty slices of a

vector, computing the value of a component of one vector corresponding
to the maximum of another vector, computing the length of the longest

identical corresponding slice of two vectors, computing the first record, in

a vector of records, whose fields have the most number of matches with the

corresponding fields of a key, and sorting a vector using merge sort. On
the other hand, quicksort is an example of a divide-and-conquer strategy

that does not have a natural treatment using diva procedures, since the

division of a vector by quicksort occurs only after some initial processing
of the vector.

The development of diva procedures arose naturally from a project to imple-

ment multiway rendezvous activities in log time whenever possible on suitable

parallel computers [Cha86, Cha87, Cha89]. Often when a diva call appears

within the sequential code of a multiway rendezvous, it is possible to use the

processes participating in the multiway rendezvous to compute the results of
the diva call, rather than activating new processes. This idea has been encorpo-

rated into a translator for a language, Adam, supporting the use of the multiway

rendezvous [Chag0a].

The organization of the rest of the paper is as follows: Compiler-enforceable
syntax for a diva algorithm, in terms of diva calls, is given in Section 3. Examples

of diva calls are given in Section 4 and informal verification of diva calls is
illustrated in Section 5. Section 6 contains a characterization of associativity

(and of associativity relative to a sequence) in terms of certain diva procedure
calls. Implementing diva calls on sequential computers is considered in Section 7,
and Section 8 considers the implementation of diva calls on parallel computers.

A comparison of using diva procedures with using general reduction operators
is discussed in Section 9 and conclusions are given in Section 10. The results of

this paper are applicable only to situations involving data that can be accurately
represented within the target computer; for example, associativity of addition

and multiplication is assumed.

For concreteness a particular syntax is given in this paper to express diva

algorithms. However, the purpose of this paper is to propose and investigate
a programming language concepl, the nondeterministic divide, rather than any

I

particular construct to support the concept. _ Ada is used as the base language

in this paper, but alternate syntax for diva algorithms compatible with any one
of numerous modern programming languages could be designed. Ada is used

as the base language because the examples given can then be both general and
simple, since programmer-accessible attributes (such as LENGTHand FIILST) and

generics are available. In addition, most readers either will be familiar with

Ada or have ready access to an Ada reference, such as [Bar84] and [Uni83]. In

view of Ada's existing complexity, the author is not recommending that Ada

be extended with syntax to support diva algorithms. Furthermore, a cpgstruct

should be fully integrated within a language during the initial design of the

language, since retrofitting a construct to an existing language may require
some awkward restrictions to avoid undesirable interactions with other features

of the language.

m

i

i

B

m

i

:_ = i_ •

= =

: :::7: :: ?

I

me

m

---i
l

ma

mm

7The distinction between a language concept and a language construct can be illustrated
by the concept of a definite iteration loop, w_ch is .!mpported by a variety of _tru_s in
_progr-a_ningTang, uages, which d]ffe)_ fafiong-oth_r ways, in restrictions placed on fhe _oice
of index type and step size.

B

|!

w

3 DIVA CALLS

Diva algorithms need to be formulated in terms of a programming language con-
struct in order to accomplish several of the goals of this paper, such as describ-

ing an algorithm that translates the diva approach into programs and making
it clear that a compiler could demonstrate adherence to the diva approach.

The construct we use to represent diva algorithms is a procedure call. Proce-

dure calls, rather than function calls, are used because procedure calls are more

general than side-effect-free functions. Permitting diva function calls would also

be useful in an actual programming language. However, defining and using diva

function calls is a straightforward extension of this study, and since the concern

of this paper is not with syntax per se, no further consideration will be given to
diva function calls in the paper.

Diva calls will be defined as restricted calls on diva procedures [Cha89].

DEFINITION 1. A diva procedure P is an Ada procedure, except that diva

precedes procedure in the declaration, restrictions are placed on the ordering

and kind of formal parameters, and the body of the procedure must be a single
if statement in a restricted form of Ada as indicated in Figure 1, where <mode>

is one of in, out, or in out, and square brackets enclose an optional unit.

Except for type names, access to nonlocals from within P is prohibited; thus

objects used within P, including subprograms, must be declared within P. Any
choice of identifiers used in P that is different from the reserved words is possible;

of course, the identifiers must-be d_st_nct, _except for the type identifiers: Two

new attributes, INITIAL and FINAL, are defined by the implementation for each

A1, ..., Am in an activation of a diva procedure, access to these attributes is

only permitted inside the two recursive calls on the diva procedure, and the
attributes satisfy the following conditions for each i and j between 1 and m:

1. Ai equals Ai'INITIAL concatenated with Ai'FINAL,

2. both Ai' INITIAL and Ai'FINAL have nonempty ranges, and

3. the range of Ai'INITIAL equals the range of Aj 'I_/ITIAL and the range

of Ai'FINAL equals the range of Aj 'FINAL. []

Notice that the syntax rules of a diva procedure are compiler-enforceable.

The requirement that subprograms used within P be declared within P permits

a compiler to disallow additional recursive calls on P as a result of executing

this Ada code and helps to ensure that the recursive calls are made before any

computation. The syntax does not permit the programmer to specify the choice

of division point used for dividing Ai into Ai' INITIAL and Ai'FINAL; thus the

choice of division point is determined by the implementation.

The term "dynamic parameter" will be used in this paper to refer to the

vectors A1, ..., Am. Ada requires that each formal parameter be declared using

i

m
m

diva procedure P

(AI: <mode> array(ll_TEGER range <>) of BASE_TyPEI; ,..

Am: <mode> oa-ray(INTEGER range <>) of BASE_TYPEm

l" ; IN_PARM: in IN_PARM_TYPE]

[; PARN: [in] out PARH_TYPE]) is

[INITIAL_PARH, FINAL_PARH: PARM TYPE;]

... Other local declarations, not containing any access to A1 , Am.

begin

if AI'LENGTH = 1 then

... Ada code not using an attribute of A1, .., Am other than AI'FIRST.

else
P(Ai'INITIAL Am'INITIAL [, IN_PARM] [, INITIAL_PARM]);

P(AI'FINAL Am'FINAL [, IN_PARM] [, FINAL_PARM]);

... Ada code not containing any access to AI Am.

end if; ' -_-

end P ;

Figure I: Syntax for a Diva Procedure

w
N

I

!

W

m

mm
D

I

a named type. Declaring the dynamic parameters using an "anonymous type

is for simI_licityof exposition in this paper _and,_infact_ when diva procedures

are translated into Ada in sections 7 and 8, named types (with unconstrained

ranges) are used. For the nonrecursive Callon P the unconstralned range of each

dynamic parameter in a diva procedure is bound to a constrained range in the

usual manner for Ada; for the recursiye calls,the underlying implementation

supplies the constrained range, ensuring that conditions I) through 3) of Def-

inition I are satisfied. Note that the intuitive meaning of condition 3) is that

the same division point is used for multiple dynamic parameters.

The restriction to just two non-dynamic parameters, which often must be

records, simplifiesthe exposition of this paper and should be removed in a con-

struct designed for a programming language due to the awkwardness sometimes

caused by having to use records. Since our concern is not with syntax per

se, providing a context-free grammar to describe less restrictive syntax is not

needed in this paper and would only add unnecessary complexity to the descrip-

tion of the translation algorithms in sections 7 and 8. More restrictivesyntax

that would permit onlyasingle dynamic parameter_s a_ possible, but such

arestriction could give-rise to significantspace_nei$iclency, a_ d_cussed at the

end of Section 4. Additional rationale for the syntax restrictionsis given at the

en_ of sections 8.1 dff_'-g_ "_': - = -- :- "_=__-_: _-_ - "

NOTE: The keyword diva supports a one-pass compiler, makes such a pro-

cedure easier to read and understand, and supports the use of a syntax directed

Z

-- i

i !

J |

u

roll

i
--7

|

i

editor; thus the programmer need not be burdened with syntax rules. (This
keyword is otherwise unnecessary, since a compiler can recognize the intent of
using a diva procedure by the use o[the I£IT:IAL and FI/rJtL attributes.) One
way to choose syntax that does not rely on the base language having an analog
to programmer-accessible attributes would be to require that the false branch
of the if have the form

divide

A1 into INITIAL1 and FINAL1;
.°,

Am _nto INITIALm and FINAL_;
recur

P (INITIALI..... INITIALm [, IN_PARM_ [, INITIAL_PARM]);

P (FINAL1..... FINALm [, IN_PARM] [, FINAL_PAI_);

conquer
,°.

Theprogrammer would not declare th_INITIlLi's and FINlLi'si these dec-

larations would occur implicitly in the divide block and the names thereby

declared could only be used in the divide and recur blocks.

DEFINITION 2. A diva call is a call on a diva procedure P such that all

actual arguments used in the call that correspond to dynamic parameters have

the same ranges. 1:3

The reason for this condition (and the reason for formulating diva algorithms

as procedure calls rather than as procedures) is to ensure that the same division

point can be used for all of the dynamic parameters during any given recursive
activation of the procedure resulting from the call. The form of diva procedures

defined byDefinition 1 can be checked at compile-time but the condition in
Definition 2 cannot be checked until run-time for actual arguments whose range

is unknown at compile-time, s

SAn alternate definition of diva procedure would permit this condition to be satisfied
automatically: the alternate definition would be llke Definition 1 except that the single range
o[the dynan6cpax_wneterswo_d be a genericpaxarneler.

z
B

4 EXAMPLES

The following standard guidelines for writing procedures are assumed in select-

ing and presenting examples in this section:

1. A procedure P should be enclosed in an encapsulating procedure whenever

either (a) results need to be computed at the end of calls on P and the
user of P does not need to know how the results are computed or (b) P

uses auxiliary parameters that do not need to be known by the user of P.

2. Whenever writing recursive procedures or loops, progranuners should avoid
having intermediate results computed if there is a way to compute such

resultsjustonqe atthe end. _ __

Sincewritingencapsulatingprocedures isstraightforward,for brevitysuch pro-

ceduresare not included inthispaper.

EXAMPLE 1: Compute the + reduclioa of a vector. The sum ofthe elements
of an integer vector x can be assigned to an integer variable TOTAL using the
call

FIND_SUM (g, TOTAL);

If the values of vector components need to be modified before a reduction
takes place, this can be accomplished within the true branch of the if; for
example, the sum of the squares of components of A can be obtained by rewriting

the assignment in the true branch of FIND_SUM as :.

An even simpler use of diva procedures is to us-e-=t-he t-rue branch of th_(_-f:to
assign values to an array A and to let the false branch of the if contain only
the recursive calls. For example, a diva procedure ASSIGN_SQUARES could assign
the squares of the index values of A to A; the if statement would be simply

if A'LENGTH - I then

A(A'FIRST) :- A_FIRST ** 2;

else

ASSIGN_SQUARES (A'INITIAL) ;

ASSIGN_SOUARI'3S (A'FINAL) ;

end if i

Similarlyvaluescould be assignedto each component of one or more vectors,

based on computations involving theindex of the component, possibly including

the use of corresponding values of other vectdrs:

Diva procedures are compatible with Ada generics. For example, a generic

diva procedure REDUCE with parameters BASE_TYPE and FUNCT could be defined

Very much like--i_i-ND_SUMi SO _-tosu-ppOrt al_ reductlons:-ATter-tl/e recursive

calls on REDUCE, the assignment

10

I

m

mm

mm

I

m

[]
|

m

w

I

m_

mm

am

m

U

diva procedure FIND_SUM (A: in array(INTEGER range <>) of INTEGER;
SUM: out INTEGER) is

-- SUM is assigned the + reduction of A

INITIIL_SUM, FINAL_SUM: INTEGER;

begin
if A'LENGTH- 1 then

SUM :- A(A'FIRST);

else

FIND_SUM (A'INITIAL, INITIAL_SUM) ;

FIND_SUM (A'FINAL, FINAL_SUM) ;

SUM :- INITIAL_SUM + FINAL_SUM;

end if ;

end FIND_SUM;

Figure 2: A Diva Procedure to Find the + Reduction

ANSWER := FUNCT (INITIAL_ANSWER, FINAL_ANSWER);

would appear. The function F corresponding to the parameter FUNCT of REDUCE

clearly does not need to be commutative, since the first argument value al-

ways corresponds to lower subscripts of the vector I than the second argument

value. This supports finding reductions using noncommutative operations, such

as matrix multiplication. F need only be an associative, binary operation; i.e.

F(X,F(Y,Z)) = F(F(X,Y) ,Z) for all X, Y, and Z in the domain ofF. Commonly

used examples of such functions include "+", "*", "and", "or", and user-defined

MAX and MIN.

The next example uses the fact that the two slices of a vector produced by

the nondeterministic divide are adjacent to each other. The number of runs in

a sequence is used in a testing the randomness of the sequence.[Hoe62]

EXAMPLE 2: Compute the number of runs in a sequence. The number of

runs in a finite sequence is one greater than the number of times a term appears

in the sequence that is larger than the next term in the sequence. Thus the

number of runs in the sequence S can be computed as follows, where ANSWER is

a record consisting of INTEGER fields COUNT, FIRST, and LAST:

COUNT_RUNS (S, ANSWER);

NUMBER_RUNS := ANSWER.COUNT + 1;

where COUNT_RUNS is declared in Figure 3. []

11

J

m

diva procedure COUNT_-RUNS-(S.; in _L_ray(INTEGER range <>) 0f-IlrrEGER;
ANS: out ANSWER_TYPE) is

-- ANS.COUNT is assigned the number of times a component of S is
-- greater than the next component Ofg. _. ' : '= ! = -

-- ANS.FIRST is assigned the value of the first component of S.

-- ANS.L£ST is assigned the value of the last component of S.

L, R: ANSWER.TYPE; -- results of left and right slices

begin =....
if S'LENGTH = 1 then : -

ANS.COUNT :- O;

ANS.FIRST :- S(S'FIRST) ;
ANS.LAST :- S(S'FIRST);

else

COUNT_RUNS (S'INITIAL, L) ;

if L.LAST > R,FIRST then

ANS.COUNT "= L.COUNT + R.COUNT + 1;

else
ANS.COUNT := L.COUNT + R.COUNT;

ena 'i:e ;
ANS.FIRST := L.FIRST;

ANS.LAST := R.LAST; = =::::=_::_ : = =:_

end _i_:; : : :

end COu]cr_RUNS;

Figure 3: A Diva Procedure to Itelp Find the Number of Runs in a Sequence

The false branch of the outer if statement in many diva procedures, such as

C0UNT_RUNS,could be programmed more simply as just the two recursive calls
followed by a list of assignment statements, given the existence of conditional
expressions such as those permitted in Algol-60 and C. In fact, this is true for
all diva procedures in this paper for which code is g_yem _ . :i::

Notice that ANS. FIRST and ANS. LAST in COUNT_RUNS are used to preserve in-

formation about the _-element overlap between adjacent slices of the sequence.
A similar diva procedure can be used to count the number of peaks in a se-
quence of distinct terms, such as identificati0n numbers; a term of the sequence
is a "peak" if it is greater than both its predecessor and successor. Information
about the .f-element overlap between adjacent slices of the sequence needs to

be preserved in order to examine each consecutive triple of terms in the se-
quence. Such a diva procedure is related to finding the number of alternating
runs [Knu73] in a sequence. The next example also illustrates the use of overlap
information. This problem is found in [GriS1].

12

m

I

m

m
m

m

m

m

l

E

m

m
m

m

m

m

m

u

m |

i -:

EXAMPLE 3: Find the length of the longest plateau of a nondecreasing

sequence. A "plateau" is a slice all of whose components have equal values.

The length LENGTH of the longest plateau of a nondecreasing sequence $ can be

computed as follows, where ANSWER is a record consisting of integer fields LEN,

FIRST_LEN, IAST_LEN, FIRST, and LAST:

FIND_LENGTH (S, ANSWER);

LENGTH :-- ANSWER.LEN;

where FIND_LENGTH is declared in Figure 4. D

A diva procedure similar to FIND_LENGTH can be written to compute the

maximum sum among the nonempty slices of a given vector of integers. For

this example ANS should have four fields, which are used to return: the max-

imum sum among the nonempty slices of A, the sum of all component values

of A, the maximum sum among the nonempty slices of t that start at the first

component of A, and the maximum sum among the nonempty slices of l that

end at the last component of A. This problem and its history are the focus of

the chapter on algorithm design techniques in [Ben86] 9. The feasibility of using
a diva procedure to solve this problem was suggested by Dana Richards.

EXAMPLE 4: Find a component value of one vector corresponding to the

maximum of another vector. The component value Y_VALUE of an integer vector
Y corresponding to the first position where the maximum of a floating point

vector X occurs can be computed as follows, where ANSWERis a record consisting

of a floating point field _IAXand an integer field C0RR:

FIND_HAX_CORR (X, Y, ANSWER);

Y_VALUE := ANSWER.CORR;

where FIND_MAX_CORR isdeclaredin Figure 5. 1:3

A diva procedure FIND_MIN_CORR, likeFIND_MAX_CORR except that mini-

mum plays the role of maximum, can be written with few changes. Both

FIND_/4AX_CORR and FIND_MIN_CORR support programming the farthestinser-

tionheuristicalgorithm forthe Euclidean travelingsalesman problem [RSL74].

(A node occurringat the maximum distancefrom the nodes of the currentpar-
tialtour isthe next node chosen toadd to the partialtour,and to add thisnode

most cheaply,itisnecessarytofinda node in the currentpartialtour occurring

at the minimum distancefrom thischosen node.) Another example of the use

of FIND_MIN_CORR is in programming the Prim-Dijkstra algorithm for finding

°Actually empty slices are included in the statement of the problem in [Ben86] so the
desired answer when all component values of the vector are negative is zero rather than the
largest value of the vector. The solution to this variant of the problem can be obtained by
taking the maximum of the maximum sum and zero upon return from the diva call.

13

M

m

dlva procedure FIND_LF_OTH (A: in DYNANIC_VECTOR;

ANS: ANSWER_TYPE) is

-- A.s._S is the leith o_ th_long_st plateau in a.
-- ARS.FIRST_LEN is the length of the longest _platsau _

-- that starts at the first component Of a.

-- ANS.LAST_LEN is the length of the longest plateau in A

-- that ends at the last component of A.

-- ANS FIRST is the value of the first component of A.

-- ANS.LAST is the value of the last component of A.

L, R: ANSWER_TYPE; -- results of left and risht slices

... declaration of MAX function

begin

if A'LENGTH -1-then " - - -_ :

aNS. LEN := 1 ;

ANS.FIRST_LEN :,, 1;

ANS.LAST_LEN :,, 1;

ANS.FIRST :- l(A 'FIRST) ;

ANS.LAST = A(A 'FIRST) ;

else

FIND_LENGTH (A'INITIAL, L) ;

FIND_LENGTH (A'FINAL,.... R) ;_

if L.LAST - R.FIRST then

ANS.LEN :-MAX (MAX (L,LEN, R.LEN), L.LAST_LEN + R.FIRST_LEB);

else

ANS.LEN := MAX (L.LEN, R.LEN);

end if ;

if L.FIRST - R.FIRST then

ANS.FIRST_LEN :- L.LEN + R. FIRST_LEN;

else

ANS.FIRST_LEN :- L.FIRST_LEN;

end if ;

if L.LAST ,, R.LAST then

AN$'LAST_LEN := L.LAST_LEN + R.LEN;

else

ANS.LAST_LEN := R.L_ST_7_EN;

end if;

ANS.FIRST :- L.FIRST;

ASS.LAST :- R.LAST;

end if; _ o _ _ _ _.......

end FIND_LFNGTH;

Figure 4: A Diva Procedure To Find The Length of the Longest Plateau

14

m

ma

I

m

Is

E

m

m

|!

i |
m

m

diva procedure FIND_MAX_CORR (A: in array(INTEGER range <>) of FLOAT;
B: in array(INTEGER range <>) of INTEGER;

CHOSE_: out ANSRER_TYPE) is

-- CHOSEN.MAX is assigned the maximum of A and CHOSEN.COER is assigned

-- the value of the component of B corresponding to the first

-- component of A equal to CHOSEN.MAX.

L, R: ANSWER_TYPE; -- results of left and right slices

begin
if A'LENGTH - I then

CHOSEN.MAX := A(A'FIRST);

CHOSEN.CORR :- B(A'FIRST) ;

else

FIND_MAX_CORR (A'INITIAL, B'INITIAL, L);

FIND_MAX_CORR (A_FINAL, B'FINAL, R) ;

if L.MAX >= R.MAX then

CHOSEN :- L;

else

CHOSEN :I R;

end if ;

end if ;

end FIND_MAI.COP_;

Figure 5: A Diva Procedure To Find A Value Corresponding to the Maximum
of a Vector

B

15

u

a minimum spanning tree [Pri57, Dij59]. (A node occurring at the minimum
distance from the-nodes of a partial spanm_ng tree ls iteratlvely added to the

partial spanning tree.)

A straightforward modification of the diva procedure FIND_MAX_COI_I{yields a
single generic diva procedure supporting both FIND_MAI_COI_ and FIND_MIN_COI_R:

A functional parameter I_CT would he used along with the use of the test

L.A = FUNCT (L.A, E.A)

in comparing L. A and R. A. A function corresponding to FUNCT would be required
to be an associative, binary operation that returns the value of one of its two

argnments as its result. There are numerous such functions, in addition to the

m a_ci_mum and_nimum functions. For examp!e, FUJCT (X, Y) couid return
the value of Y if X has zero value and return the value of X otherwise; when

instal_tiated with this function, the generic diva procedure would yield a diva

procedure that returns the value of the component of one vector B correspond-
ing to the first nonzero component value of another vector a (and returns the

last component value of B if all component values of A equal zero). However,

such a generic diva procedure should be used judiciously. It follows from the
observations in Section 6 that program correctness is much easier to maintain if

a separate diva procedure (not having a functional parameter) is written when

the function corresponding to FUNCT wou!d be n0ntriv!al. _

It is easy to see that a diva procedure similar to FIND_MAX_COlOR,but using

only a single dynamic parameter, can be written to compute the index of the

first component of an array whose value satisfies a particular property, such as

being maximal, minimal, nonzer% orpositive. Of course, if desired, the index
of the last such component could be found instead.

None of the examples of diva procedures given so far uses the fact that a

diva procedure can have a scalar parameter of mode in. An example is a diva
procedure LOOKUP, which uses the in parameter to store._ a search key for an

unordered table lookup. LOOKUP, which can be obtained as a straightforward
modification of FIND_MAX_CORR, has two dynamic in parameters A and B, an in

parameter KEY, and an out parameter ANS-having two fields FouNI_- aridVALUE.
The divap_o_edure LOOKUPSets:AN_;_.FOTJ_D t0-true :if a_y_r_Y equals the

value of a component of A; if ANS.FOUND, then A_S .VALUE equals the component

value of B corresponding to the first such component value of A. There are many
natural variants of this example, some of which involve an associative search.

One, suggested by Dana Richards, is the retrieval of the first record, in a vector
of records, whose fields have the most number of matches with the corresponding

fields of a key, :

A diva procedure can be written to compute the length of the longest identi-

cal corresponding slice of two (or any predefined number of) given vectors. The

overlap between two slices can be considered without reexamining the contents

of the overlap by using parameters that keep track of the length of the longest

16

I

I

m

m

m

B

I

mI

i
m

J
m

M

l

I

m

w

such slice, the length of the longest such slice starting at the first component,

and the length of the longest such slice ending at the last component.

Other simple applications of using more than a single vector in a diva al-

gorithm include computing the inner product of two vectors, computing the

square of the distance between two points in n-dimensional Euclidean space,

and computing the Hamming distance between two vectors of bits. It is easy

to see that the merge sort, but not quicksort, can be written as a diva call.

The processing of a vector performed by quicksort before making recnrsive calls

is not permitted within a diva procedure. Unlike earlier examples, the vector
corresponding to the non-dynamic parameter containing the computed answer

in the diva call on a merge sort diva procedure must have the same length as

the length of the dynamic parameter. The merge sort will be considered further

in Section 7.

Before going on to the next section, we explain why diva procedures are

permitted to have more than a single dynamic parameter. Consider a situa-
tion in which X and Y in Example 4 are used elsewhere in the program in calls

on diva procedures having one, but not both, of X and Y as actual arguments

corresponding to dynamic parameters and possibly having additional dynamic

parameters. If only a single dynamic parameter were permitted in diva pro-

cedures, such diva procedures could be written by defining a vector Z whose

components are records containing a field for each of the corresponding compo-
nents of: the vectors X and Y and each vector used in any diva call with either

X or Y. The number of fields existing in each component of Z would be static,
whereas the number of fields needed in different parts of the program would

vary. Diva calls are most useful when the range of such vectors is large. Since

parameter passing for array parameters may be implemented by copy [Uni83,

6.2.7], the Ada programmer will realize that it could be quite costly to use Z
as an actual argument when not all fields are needed. 1° An alternative in this
situation would be to define several different vectors of records for different por-

tions of the program, but since some of the fields in the records of such vectors
would contain the same information, this alternative would require copying in-
formation from one such vector of records to another. On the other hand, the

fact that diva procedures can have several dynamic parameters permits space

utilization to be appropriate to a particular usage, within a conventional se-

mantic model, including the use of a vector of records when appropriate. This

storage advantage is also provided by the "fields" of a paralation [Sab88]: such
"fields" can be added and deleted according to the needs of different parts of the

program. The semantics of the noteworthy paralation model are much richer

and more powerful than conventional semantics.

1°Similarly, the implementation of diva calls involving Z on a distributed memory computer
could be quite wasteful of storage space and/or conununlciation time.

17

i

5 VERIFICATION OF DIVA CALLS

In view 0f-il_e roie recursio n plays in _diva prOCure: _the nat-UrM wa_' to ver-

ify such a procedure is to use strong induction on the length of the dynamic

parameters in the call. This approach is il!ustr_ated bythe following informal
proqfthat the diva procedure in Exam__ple1 assigns to sw[the__- reduct!0n of
A.

NOTE: The + reduction of an array having a single component is defined

to be the value of the single component. : _ : :

INFORMAL VERIFICATION OF FIND_SUM: = _ _

case one: A'LENGTH = l. Since SUM is assigned the value of the single com-

ponent of A, SUM is assigned the + reduction of A.

case two: A'LENGTH > 1. By 1) and 2) of Definition 1, the length of_both

A'INITIAL and A'FINAL is less than the length of A so we may apply

the induction hypothesis and conclude that, after the two recursive calls,

INITIAL_SUM is assigned the + reduction of A'INITIAL.... and FfiAL_SUN

is assigned the + reduction oft'Fi_L. By 1) of Definition], the values

of the components of A are the values of the components of A'INITIAL

followed by the values of the Components of A'FINAL. It is thus clear that

SUM is assigned the + reduction of A. [] : -: :_

The only reason verifying other d!vaprocedures __more co_mplex is dueto the

use of more complex parameters and more complex Ada in the true branch and

false branch (after the recursive calls) of the if, rather than to any additional

complexity of the diva concept itself.For example, hereis a sketch 0f an informal

proof of the diva procedure FIND_LENGTH of Example 3.

U

I

m

m

J

mE

E

!

l

I t

m .

l

m
i

m

i

_ _ u 7 y . __ :?_ . : : =

18

!

!

m
mm

= .

w

F 7

w

u

INFORMAL VERIFICATION OF FIND_LENGTH:

case one: A'LENGTH = 1. The value of the single component of A is easily

seen to satisfy the specified value of each field of AN$.

case two: A'LENGTH > 1. By 1) and 2) of Definition 1, the length of both

A'INITIAL and A'FINAL is less than the length of A so we may apply the

induction hypothesis and conclude that, after the two recursive calls:

• L.LEN is the length of the longest plateau in A'INITIAL.

• L.FIRST_LEN is the length of the longest plateau in A'INITIAL that

starts at the first component of A'INITIAL.

• L.LAST_LEN is the length of the longest plateau in A'INITIAL that

ends at the last component of A' ISlTIAL.

• L.FIRST is the value of the first component of A'INITIAL.

• L.LAST is the value of the last component of A'INITIAL.

and

• R.LEN is the length of the longest plateau in A'FINAL.

• R.FIRST_LEN is the length of the longest plateau in A'FINAL that

starts at the first component of A'FIIiAL.

• R. LAST_LEN is the length of the longest plateau in A DFINAL that ends

at the last component of A'FINAL.

• R.FIRST is the value of the first component of A'FINAL.

• R.LAST is the value of the last component of A'FINAL.

By 1) of Definition 1, the values of the components of i are the values of
the components of A'INITIAL followed by the values of the components
of A'FINAL. IfL.LAST = R.FIRST, then L.LAST_LEN + R.FIRST_LEN is

the length of a plateau in A so ANS.LEN = max (max (L.LEN, R.LEB),

L.LAST_LEN + R.FIRST_LEN) isthe length of the longestplateau in A;

otherwise no plateau extends from the end of A'INITIAL to the begin-

ning of A'FINAL, so ANS.LEN = max (L.LEN, R.LEN) is the length of

the longestplateau in A. IfL.FIRST = R.FIRST, then a plateau in A ex-

tends from the beginning of A'INITIAL intoA'FINAL so ANS.FIRST_LEN

= L.LEN + R.FIRST_LEN isthe length of the longestplateau startingat

the firstcomponent of A; otherwise no plateau extends from the begin-

ning of A'INITIAL into A'FINAL so ANS.FIRST_LEN = L.FIRST_LEN is
the length of the longest plateau starting at the first component of A. If

L.LAST = R.LAST, then a plateau extends from the end of A'INITIAL to
the end of A'FINAL so ANS.LAST = L.LAST_LEN + R.LEN is the length

of the longest plateau ending at the last component of A; otherwise no

19

I

plateau extends from the end of `I'INITIkL to the end of A'FIIAL so

`INS. LAST = R. LIST_LEN is the length of the longest plateau ending at the
last component of i. Finally, it is clear that ,iNS. FIRST and ,iNS. LIST are

assigned the specified values. []

I

i

Note that 6 cases are considered in verifying the code in the false branch
of the if of FIND_LEI/GTH after the recursive calls. We shall return to this

observation in the next section. The reader is encouraged to provide similar

proofs for the diva procedures given in Examples 2 and 4; the latter will need

to use 3) of Definition 1 as well as 1) and 2).

Notice that the inability of assuming anything about the choice of division

points does not make these proofs more complicated, since the nondeterministic
divide is fully compatible with such use of strong induction.

B

I

Z

Ill

U

im

mm

m

U +

=

M
I +

+

2O i +

|+

m
i

6 DIVA PROCEDURES AND ASSOCIATIV-

ITY

As mentioned in the introduction, associative operations are well-known to be

efficiently implementable on a variety of parallel computers. This section shows

how diva procedures are intimately related to associative operations. To support

additional applications, associativity is weakened to associativity relative to

a sequence. Operations that are associative relative to a sequence are also
efficiently implementable and diva procedures are shown to be intimately related

to such operations as well.
The section concludes by showing how the use of diva procedures can be

simpler than using a general reduction operator to combine the results of a

programmer-defined function.

w

m

6.1 Characterizing Associativity

Throughout this paper the notation < xl,.--,xn > denotes a sequence of n
elements and o denotes string concatenation. By a "slice" of a sequence we

shall mean a sequence of consecutive terms of the given sequence.

DEFINITION 3. Let s be a finite sequence of elements of E and let f be a
function from E x E to E. Tile f-reduction of the sequence < x > os, denoted

fr(< x > os), is defined to equal xif s is the null string and to equal/(x, fr(S))
otherwise.

DEFINITION 4. Let s be a sequence of elements of E and let f be a func-

tion from E x E to E. To say that f is associative relative to s means that

f(fr(sl),/(f_ (s_), f_(s3))) = f(f(f_(sl), fi(s2)), h(s3)) holds for any nonnull
finite sequences sl, s2, and s3 such that sl o s_ o s3 is a slice of s.

The concept of associativity relative to a sequence does not depend on the

arbitrary convention of grouping from the right and is a strict generalization
both of associativity and of associativity relative to consecutive triples of terms

of a sequence. In fact, the function that would map L and I_into AN$ in Figure 4 is
a nonassociative function that is associative relative to any sequence of records of

type ANSWER_TYPE corresponding to a nondecreasing sequence of integers, using
the natural correspondence defined in the true branch of the if in Figure 4. The

results stated in this paragraph as well as the next two theorems are proven in

[Cha90b].

21

g

RELATIVE ASSOCIATIVITY CHARACTERIZATION THEOREM. Let u

be a nonnull finite sequence of elements of a set E, let f be a function from E

x E to E, let S be the set of slices of u, and let R denote the smallest subset of
S x E such that

(a) for each term z of u, R contains the pair(< z >,z) and

(b) for each s in S, R contains each pair(s,f(t',t")), where (s',t') and (s",t")
are in R and s is s t concatenated with s It.

Then the following statements are equivalent"

1. f is associative relative to u.

2. R is a function from S to E.

3. R is a function from :9 to E that maps each s in S to fr(s).n

ASSOCIATIVITY CItARACTERIZATION THEOREM. Let S denote the

set of nonnull finite sequences of elements of a set E, let f be a function from
E × E_OE, andlet R denote the Smallest subseiofS x B such that

(a) for each x in E, R contains the pair (< x >,x) and

(b) for each s in S, R contains each pair (s,f(t',t")), where (sl,t ') and(s",t")
are in R and s is s _ concatenated with s".

Then the following statements are equivalent:

I. f is associative.

_. R is a function from S to E.

3. R is a function from S to E that maps each s in S to f_(s).D

The following consequence of the characterization theorems describes an in-

timate relationship between diva procedures and associativity.

COROLLARY. Let P be a diva procedure whose parameter list has the form

A: in array(INTEGER range <>) of BASE_TYPEI;
PARM: [£n] out BASE_TYPE2

:=

and such that an assignment to PARdiis made during each call on P.Letf" den=ore

the function that combines the results from A 'INITIAL and 1 _FINAL in the false

branch of the if of P into PARM. Then:

22

m

mm

m

lira

m

I

III

m

!1

i

m

m

z

II

m

B

m _
m

il

i
m
m
i

II

= =

1. f is associative if and only if the value assigned to PARI! by a call on P is

uniquely determined by the value of the actual argument corresponding to
A.

2. f is associative relative to the sequence of component values of a vector I

if and only if, .for any slice S oil, the value assigned to PldtM by a call on
P with actual argument S is uniquely determined by the component values

ors.

i

PROOF. Proof of (1). It suffices to reduce the proof to the case where
BASE_TYPEI and BASE_TYPE2 are the same and the true branch of the if of P
simply assigns A(A_FIRST) to PAE_I: For ACT can then be applied, letting E
be the set of values of type BASE_TYPE2 and letting R be the set of all pairs

(X', ¥'), where X' is the sequence of component values of an array X of base
type BASE_TYPE2 and range type a subrange of INTEGER and where Y' is the
value of a variable Y after the call P(X,Y). To reduce the proof to this case, for

each possible actual argument X corresponding to the dynamic parameter A of
P, let X" denote tile array, having the same range as X and whose base type is
BASE_TYPE2, whose component values are obtained by applying the true branch
of the if of P to each component of X. Let P" denote the diva procedure obtained

by replacing the first parameter declaration of P by

A: in array(INTEGER range <>) of BASE TYPE2;

and by replacing tile true brancli of the if of P with

PARM :- A(A'FIRST) ;

Note that the function f in tlae hypothesis is also the function that combines

the results from A'INITIAL and A'FINAL in the false branch of the if of P" into

PAI_. Finally note that the value assigned to PM_M by a call on P is uniquely

determined by the value of X if and only if the value assigned to PM_Mby a call

on P" is uniquely determined by the value of X".
Proof of (2). It suffices to reduce the proof to the case where BASE_TYPE1

and BASE_TYPE2 are the same and the true branch of the if of P simply assigns
A(A'FII_ST) to PAI_M:For RACT can then be applied, letting E be the set of
values of type BASE_TYPE2 and letiing R be the set of all pairs (s', Y'), where
s' is the sequence of component values of a slice S of an array X of base type
BASE_TYPE2 and range type a subrange of II_TEGEtt and where Y' is the value
of a variable ¥ after the call P(S,Y). To reduce the proof to this case, for each

slice S of X, let S" denote the array, having the same range as S and whose base
type is BASE_TYPE2, whose component values are obtained by applying the true
branch of the if of P to each component of S. Let P" denote the diva procedure
obtained by replacing the first parameter declaration of P by

A: in array(INTEGER range <>) of BASE_TYPE2;

and by replacing the true branch of the if of P with

23

m
I

PARM := A(A'FIRST);

Note that the function / in the hypothesis is also the function that combines
the results from A'IIIITIAL and A 'FINAL in the false branch of the if of pll into

PAI_I. Finally note that the value assigned to PARM by a call on P is uniquely

determined by the value of $ if and only if the value assigned to PAler by a call
on P1_ is uniquely determined by the value of $11.: D

It is indeed possible for a diva procedure to satisfy the first _sentence of the

corollary, yet _have a n-on;_ss-ociative c0rnbln_ng_t'unetion f._F6r a diva procedure

II0IIDV.TEI_I, having formal parameters A and PAI_, can be written that assigns

to fields of PARMthe length LEN_IIIITIAL of the INITIAL slice of the dynamic pa-
rameters used in its first recursive call, the length LEII_FI_AL of the FILIAL slice

used in its second recursive call, and the total length LELIof the dynamic param-

eter A, respectively. Clearly the value assigned to PAI_! by a call on IIOIIDETI'_RH

is not always uniquely determined by the actual argument corresponding to 1,

since this value depends on the choice of division po_nts: 'File diva procedure
LI0_V.TV.Pd_ also illustrates the final comment in the third point of Section 2: If

the dMde in a diva procedure were defined to be a determFn_stic divide at the

middle, then LEII_INITIAL and LEII_FINAL would be guarantee d to differ by at

most 1, so a sequential loop (without a stack) could not be used to implement

this procedure for initial dynamic parameters of length 4 or greater. (The fact

that through such a diva procedure a progral_mer Fan obt_n information about

the choice of division points made during a particular execution is no violation

of nondeterminism, of course.)

For all diva procedures P considered int!fis paper that satisfy the hypothesis
of the corollary, with the obvious exception of NONDETERM in the preceding pa_ra-

graph, the uniqueness of the value assigned to PARN would immediately follow
from the natural specification of P so the proof that P satisfies its specification

would immediately imply that f is associative_

6.2 Proving As sociativitY

Many applications of divaprocedures can be comp_tedusing a general reduction

operator, instead of using a diva procedure. When a general reduction operator

is used to produceaunique valu_e, !t is necessary to demonstrate both tha t the
value returned by the function f satisfies the relevant properties and that /is

associative (perhaps relative to a sequence). In the remainder of this section we

consider how such _f of associativity can be more complex than the entire
prooi _t_h_e d]vap_i__-_ ---_--_!_=_iii_-_ - _ (-÷_- _: ii

Let f be the combining function implicit in the false branch of the if of

a diva procedure P after the recursive calls and let p denote the number of

cases used in proving the correctness of a single application of f. Note that p
can be less than the number of logical paths in the false branch of the if of

24

Ill

II

mm

i

I

m
m

I

m

il

I

m

m
m

m

[I

l!

m
l1
1

m
m

g

M

Z

z i

=

m

=.--z

P. For example, the number of logicalpaths in the falsebranch of the if of

FIND_LENGTH is24, since(4+2) x 2 x 2 = 24, yet p has the value 6 for the proof

ofcorrectnessof thiscode segment given inSection5.

Demonstrating the associativityof f via a straightforwardcase analysis

based on the proof ofcorrectnessof a singleapplicationoff requiresp4 cases.

For, given threerecordsX,Y, and Z of the same type as PhRN, foreach ofthe p

possible relationshipS between the values of Y and Z, there are p possible rela-

tionships between the resulting computed value and the value of X and for each

of these p2 cases there are p2 similar cases to consider in which the values of
X and Y are combined before a comparison is made with the value of Z. Thus

when p is 2 or larger, the number of such cases is much smaller when a diva

procedure is used than when a general reduction operator is used: p instead of

p4.
Sometimes the number of such cases can be reduced by considering which

relationships among the data are actually relevant in view of the code within f.
For example, let / be the combining function for the false branch of the diva

procedure COUNT_RUNS ill Example 2. A straightforward proof of correctness of

a single application of f would involve 2 cases, so for such a proof, p is 2 and
p4 is 16. However, in determining the effect of/(Y,Z) and then y(x, /(v, z))
and f(X, Y) and then /(y(x, z), z), the conditionals and assignments within /
are such that combinations of the following cases are sufficient:

variables compared case 1 case 2

X.LAST and Y.FIRST

Y.LAST and Z.FIRST

> otherwise

> otherwise

Thus 4 cases are sufficient, an improvement over p4 (but not an improvement

over p). For applications having more than a trivial number of kinds of condi-
tionals within the logic of f, such as counting the number of peaks in a sequence

of distinct terms, such a consideration of relevant relationships requires signif-
icant effort that is unnecessary when the diva approach is used and can still

result in many more cases in the proof.

Another approach to proving associativity is to rewrite the requirements for
the definition of associativity to hold, perhaps using conditional expressions,

before performing a case analysis. Such a proof of relative associativity for

the combining function / for the false branch of FIND_LENGTH appears in the

appendix to [Cha90b] and is also significantly more complex than the entire

proof of the diva procedure FIND_LENGTH given in Section 5.
A more extensive comparison of the use of diva procedures and general re-

duction operators appears in Section 9.

25

I

7 SEQUENTIAL IMPLEMENTATION OF DIVA

CALLS

Implementing diva calls on sequential computers is considered in this section and
the next section considers their implementation on parallel computers. Since

each processor in a parallel computer can perform part of the computation of a

diva call independently, the observations of this section are used in the next.

Consider an arbitrary call on a diva procedure p, where the initial length of

each of the dynamic parameters is n, and assume that n is a power of 2. Ngte
that the number of executions of the true branch of the if of P is independent

of the choice of division points during the call, and the same holds for the false

branch: for the number of executions of the true branch is clearly n(0neexecu-

tion for each element of the dynamic parameter range), and a straightforward

strong induction argument shows that the number of executions of the false
branch is n - 1. To see the latter, 11 assume the result holds when the length

of the dynamic parameters is less than n and that the division point for the
original vectors results in initial and final slices of lengths a and b, respectively.
Then the number of executions of the false branch is

I)÷ (b-1)+1= (a+ b)-2= n-1.

One option for implementing a diva call is to choose the division point of
vectors at the middle of each vector and to make the recursive calls specified in

the diva procedure; we shall refer to this opUon as the middle option. Another

option is to implement a diva call using a loop, by choosing the division point

of vectors just before the end of each vector; we shall refer to th!sopt!on as the
end option. Note that theend opUonis different from tail recursion, although

they can both be implemented using a loop, since tail recursion requires that a

recursive call occur last in a subprogram.

Since the middle option requires overhead for recursion, orth¢ simu!a_ion
of recursion, and the end option requires only the overhead of a loop, there are

many diva procedures P for which the time required for the end option, averaged

over all possible input values, is less than that required for the middle option.
In fact, there are many diva procedures for which the end option is more

time efficient than the middle option regardless of the input values to the pro-

cedure. The following simple theoremqIlustrates this fact. In the statement of
the theorem, the term conquer block refers to the portion of the false branch of

the if of the diva procedure after the recursive calls.

I

m

II

I

Ill

m

E

I

g

I

i
[]

[]

I

I

I

m

m

!
I

11Thls fact is intuitively obvious, since to break a piece of wood into n pieces requires n -

I vertical division points, regardless of the location of the division points.

26

m

I

m
mm
!

I

m

mm
B
I

mm

I

!

THEOREM. Let P be a diva procedure satisfying the following condition: the

maximum time for executing a logical path in the conquer block of P is less than

the sum of the minimum time for executing a logical path in the conquer block

and the minimum additional time required for two recursive calls on P (beyond

that required for a loop}. Then choosing division points for the dynamic param-

eters of P based on the end option and using a loop to implement this option

produces more time e1_cient code than any option requiring recursion.

PROOF. Let M and m represent the maximum and minimum time, respec-

tively, for executing the conquer block of P. Consider any call on P and let n

denote the length of the initial dynamic parameters of the call. Recall that the
true branch of the if of P will be executed n times and the false branch n - 1

times. Let T be the total time required for all n + (n . 1) determinations of
which branch of the if to execute as well as all n executions of the true branch;

note that T is independent of the choice of division points. For i between 1

and n - 1, let Ei and Mi represent the time required for the ith execution of

the conquer block for the end and m_die opti0ns, respectively, and let Li and

Ri represent the overhead for using a loop and recursion, respectively. (This
notation does not ignore the fact that the values of local variables of the i th

execution using the end option will, in general, be different from such values of
the i th execution using the middle option.) Let D denote the smallest of the

differences Ri - Li, for i between 1 and n - 1. The fact that the end option

requires less total time than tim middle option follows from the inequalities

n-1 n-1

T+E(Ei+Li) < T+M(n-1)+ELi
i=1 i=1

rl-1

< T+(m+D)(n-1)+EL,
i=1

n-I

= T+m(n-1)+E(D+Li)
i=l

< T+min-1)+E(Ri-Li+Li)
i--1

: : f -t- re(n- 1) + ER i
i=l

n-1

_<. T + E(Mi + Ri)
i=1

-where the single strict inequality foliows from_the condition in the hypothesis.

Finally note that the onl_,proph-/_y bf the middle option used in this proof is

27

1

m
I

that the middle: option requir_ theuse ofrecursion. D

The additional time required for two recursive calls beyond that required for

a loop is typically more than the time for executing a single addition. Based

on this assumption, the diva procedures in Examples 1, 3, and 4 clearly satisfy
the condition in this theorem, since the time required for executing the conquer

block of each is constant, and the diva procedure in Example 2 also satisfies

the condition, since the only variability in time for executing its conquer block

is due to the possible execution of a single + 1. On the other hand, the diva

procedure for a merge sort would fail to satisfy this condition; the merge sort is
considered further near the end of this section.

: One _strategy for a sequential implementation of a diva procedUre P is to

translate the diva procedure into the code for the procedure P of Figure 7. Since

both procedures have the same name and formal parameter list, no modification
is needed to the code for a diva call. The compiler is assurned to determine a

value MY_NUM_ITEPATIONS for P, Which is 1 if the middle optlonis chosen and

is the length of the dynamic parameters in the nonrecursive call on P if the end

option is chosen. Of course, the target code in Figure 7 could be optimized so no

test on MY_NUM_ITERATIONS is included for these two extremes, so no run-time
cost need be incurred. For generality, Figure 7 assumes the parameter list of P is

as given in Figure 1, with IN_PARM and PAPJ_included, and with PAI_ having the
mode in out, except that we assume the m actual arrays corresponding to the

dynamic parameters in the diva procedure have been declared to be constrained

versions of DYNAMIC_VECTOR1, ..., DYNAMIC_VECTORm.If any names used in the

source version of P conflict with newly introduced names, suchoas FIRST and
LAST, a suffix should be added to :tl_e new name to aV01d Such_a conflict. If

the diva procedure contains neither an out nor an in our parameter PARM, the

assignments of PARM to INITIAL_PARM and FINAL_PARM in Figure 7 should be

omitted. The procedure P_l for the diva procedure FIND_SUM of Example 1, i.e.

FIND_SUM I, is illustrated as part of Figure 10 in the next section.

Note that in computing the cost of recursion in P over the cost of using

a loop when Figure 7 is the basis for the translation, the form of parameters
used should be ihat of procedure P_l, where parameters to indicate the current

range are used, rather than vectors whose range is unconstrained, and where the

parameter IN_PAP_Mhas been eliminated. The theorem stated in this section is
conservative not only by using maximums and minimums but also by ignoring

compiler optimizations. When the end option is used, the compiler can deter-
mine that the true branch of the if iS t_e code that will be executed to compute

the value of FINAL_PARM. This additional information can be very useful.

As an illustration, consider Figure 8, which contains the true branch of the
if of Figure 7 when the diva procedure P is COUNT_RUNSof Example 2. In per-
forming data flow analysis, each variable of type ANSWER TYPE cou!d be treated
as three separate variables. Straightforward data flow analysis would permit
the elimination of variables whose values are not used or whose values are guar-

28

m

I

!

D

m

!

t

m
I

m
I

[]

m

[]

m

_

m l

m

E

l

m

IIF

m
m
m

|

i

procedure P (AI: in out DYNAMIC_VECTOR1; ... Am: in out DYNAMIC_VECTORm;

IN_PARM: in IN_PARN_TYPE; PAR/_: in out PARM_TYPE) is

procedure P_I (FIRST, LAST: in INTEGER; -- limits of range
PARN: in out P_EM_TYPE) is

MID: INTEGER;

MY_SECTION_LEN" INTEGER := LAST - FIRST + I;

INITIAL_PARM, FINAL_PARM' PARM_TYPE;

... Place any additional local declarations of the source's P here.

begin
if MY_SECTION_LEN <- MY NUM_ITERATIONS then

... The true br_nch of the if of the source's P is placed here, with

... A'FIRST replaced by FIRST.

for I in FIRST+ I .. FIRST + MY_SECTION_LEN - 1 loop

INITIAL_PARM := PARM;

... The true branch of the if of the source's P is placed here, with

... A'FIRST replaced by I.

FINAL_PARM := PARM;

... The false branch of the if of the source's P (after the recursive

... calls) is placed here.

end loop;

else

MID := (FIRST + LAST) / 2;

P_I (FIRST, MID, INITIAL_PARM) ;

P_I (MID + I, LAST, FINAL_PARM);

... The false branch of the if of the source's P (after the recursive

... calls) is placed here.

end if ;

end P_I ;

begin -- P

P_I (AI'FIRST, AI'LAST, PARM);

end P;

Figure 6: Translation of a Diva Procedure For a Sequential Computer

29

m

m

ANS.COUNT :" O;

ANS.FIRST :,, S(FIRST) ;
ANS.LAST :B S(FIRST) ;

for I in FIRST ÷ I .. FIRST ÷ MY_SECTION_LEN - I loop

L :m ANSi

ANS. COUNT :," 0 ;
ANS.FIRST :- S(I);

ANS.LAST :- S(I);

R :" ANS; ,,

if L.LAST > R.FIRST then

ANS.COUNT :- L.COUNT + R.COUMT + 1;

else :

ANS.COUNT :,, L.COUNT + R.COL_T;

end if ;

ANS. FIRST := L. FIRST;

ANS.LAST :- R.LAST;

end loop;

Figure 7: Code To Be Optlmlzed:!:_ : _

anteed to be zero, the replacement of R.FIRST and R.LAST by S(FIRST + I),
and the elimination of unnecessary code such as x :

else

L.COUNT := L.COUNT;

It is easy to see that such straightforward transformations permit the sequential

loop to be replaced by

L.COUNT := O;

L.FIRST :- S(FIRST);

L.LAST :- S(FIRST);

for I in FIRST + 1 .. FIRST + MY_SECTION_LEN - I loop

if L.LAST > S(I) then

L.COUNT :- L.COUNT ÷ 1;

end if;

L.LAST :- S(I);

end loop;

Based on more sophisticated data flow analysis, this code could then be replaced

by

lira

m

m

Z

I

m)

i)

m)
•

m

m

m

[]
mm

-- z
m

m i

m_

=30

m

mm

mm

hm_

u

w

L.C0UNT:= O;
L.FIRST:= S(FIRST);
for I in FIRST+ ! .. FIRST+ MY_SECTION_LEN- ! loop

if S(I - 1) > S(I) then
L.COUNT:= L.COUNT+ 1;

end if;
end loop;
L.LAST:= S(FIRST+ MY_SECTION_LEN-1);

A comparison of times required for the middle and end options should be
made only after optimizations, such as those in the preceding paragraph, have
been performed.

The merge sort is a noteworthy example in which the end option (which
yields the straight insertion sort) is more efficient for dynamic parameters of
very short length and the middle option is more efficient for dynamic parame-
ters of longer length, since the conquer block of the merge sort would require
time proportional to the length of the dynamic parameters to carry out the
merge. Expecting a compiler to determine analytically for a diva procedure
such as merge sort a value of MY_NUM_ITERATIONS strictly between 1 and the
length of the dynamic parameters seems unreasonable but there are at least two
other possibilities. First, a general algorithm could be made available to the
compiler, which could use characteristics of the conquer block in question as
parameters in the algorithm. Such an algorithm could either be heuristic or ob-
tained as the result of an analytical study. Second, the compiler could calculate
an approximate value of MY_NUM_ITERATIONSby running several compile-time
tests involving vectors whose components are assigned random values.

There are a variety of reasonable options in addition to the middle and end
options, such as choosing the division point after the first component of the
dynamic parameters. Of course, when a compiler is unable to determine which
option is superior, it could use the middle option, with the nondeterministic
divide leading to no run-time cost (nor savings) over that typically expected
by programmers for a divide-and-conquer algorithm. In the discussion so far,
the choice of option does not depend on the values of the actual arguments.
This restriction could be relaxed and the values of parameters, other than the
dynamic parameters, could help to guide the choice of option.

Developing sophisticated techniques for a compile-time decision among such
options is the subject of further research. For the purpose of this paper, it
is sufficient to observe that the nondeterministic divide provides flexibility to
the compiler in generating efficient code and, as pointed out above, there are
important diva procedures for which a straightforward compiler could eliminate
unnecessary overhead due to recursion.

31

I

8 PARALLEL IMPLEMENTATION OF DIVA

CALLS

Since it is well-known that associative operations can be implemented efficiently

using a variety of techniques and since diva_alls have been shown in Section 6
to be int|mately related to associative operations, it is intuitively clear that diva

calls can be implemented efficiently on a variety of parallel computers. For the

sake of illustration, strategies for i_mplementingdiva calls on several classes of

parallel computers are discussed in this section. These strategies are similar to
strategies for implementing reductions on such computers.

We first present an algorithm that translates diva calls into code for certain

MIMD co m2u_ters and then discuss in Section 8.3 how the algorithm could be
modifiecl:for S]$i-b computers: For simpli-cityl the alg0rithm assumes the number

of processors is a power of 2.

The basic implementation strategy is to let worker processes obtain partial
results and then to com-b_ne-tl]ese partial results: using access to Shared mem-

ory (for shared memory MIMD architectures), message passing (for distributed
memory MIMD architectures), or shifts (for SIMD architectures). Discussing

how to generate actual code for particular parallel computers would lack gener-

ality and would introduce unnecessary details. Thus a high-level language, Ada,

is used to describe the target codeand the formof Ada rendezvous used !sone in
which the accept block simply assigns values to parameters. Such a simple Ada

rendezvous could be implemented using access to shared memory on a shared

memory computer and using message passing on a distributed memory com-

puter. In discussing SIMD computers, we shall explicitly show how the use of

such an Ada rendezvous can be replaced by the use of shifts. There is no simple

way to characterize hybrids of the three major classes of parallel architectures,

shared_emory MIMD, distr!buted2_emory MIMD, and SIMD. Thus target
code for hybrids will not be presented. However, the various translation 0pt_ons

for a simple Ada rendezvous suggest the feasibility of adapting the target code

for a hybrid architecture.

Combining the partial results of a diva call using an MIM D computer can
involve the participation of a large number of processors either accessing cer-

tain memory locations (if shared memory is used) or communicating simulta-

neously (if memory is distributed). Ideally, shared memory computers are pro-
grammed without considering the actual physical location of memory; however,
contention for nonlocal memory can lead to serious degradation when a large

number of processors attempt to access the same memory location simultane-

ously [YTL86, RT86]. Similarly, whereas the use of worm-hole routing [Dal86]

permits distributed multicomputers to be programmed without considering the

distance (in communication hops) between processors, contention for channels

can lead to system degradation when many processors are involved in simul-
taneous communication. To avoid degradation due to memory contention or

32

I

i

I

I

l

I

E

m

!

!

!
i
l

U

mm

mm

mm

i +

+m+
II +

channelcontention,theinterconnectionswithin the target computer need to be

considered by a diva call translation algorithm. Although a variety of commu-

nication schemes can form the basis for such a translation algorithm, to present

a specific algorithm we shall assume the following condition is satisfied by the

MIMD computers considered:

Processes can be assigned indexes in Such a way that, for all i

and j less than the number of processes, an Ada rendezvous whose

accept block simply assigns values to parameters can be implemented

efficiently so that information can be passed from the process with

index i to the process with index j whenever the binary code for j

can be obtained from that of i by flipping a single 0 bit; this flipped

bit must be to the right of the rightmost 1 bit in the code for i if the
code for i has a 1 bit.

For example, when the number of processes is 8, the condition requires that a

simple Ada rendezvous can be implemented effÉciently:

from the process with index to the process(es) with index

000 001, 010, and 100
010 011

100 101 and 110

110 111

Notice that a hypercube topology provides direct connections between pairs of

processor/memory nodes with tile above indexes.

8.1 Translation for MIMD Shared Memory Computers

The existence of shared memory is assumed in this section. This assumption
will be removed in Section 8.2.

TRANSLATION ALGORITHM:

Let P be a diva procedure having dynamic parameters A1, ..., Am and addi-

tional parameters IN_PARM and PARM, where the dynamic parameters have been

declared to be constrained versions of DYNAMIC_'CgCTORI, ..., D'[IIAMIC rCggT0f_m,

respectively. The diva procedure P can be implemented on an MIMD shared

memory computer by translating it into the code for the procedure P given

in Figure 9, where the following additional notation is used: A worker is re-

sponsible for computations involving the slices of the dynamic parameters of

length MY_GRAIN_SIZE starting with subscript MY_SECTION_START. The array

MY_INDEX_T0_CALL is to store the list of integers whose binary codes are ob-

tained by flipping 0 bits in the binary code for MY_IIDV.X as explained above;

33

m

the length of this list is assigned to the variable MY IIUM_OF_ClLLS and this list

is arranged in ascending order. The variable MY_lfUM_ITEItATI011S should be

assigned 1 if the middle option is chosen (see Section 7) and assigned the value
of MY_GRAIN_SIZE if the end option is chosen. 13

The translation algorithm would translate the source code for FIND_SUM in

of Example 1 into the code for the procedure FIND_SUI4 of Figure 10.

m

m

I

I

Z

m
I

z
i

m

i

5L:LL:_ _ : :

Z
U

I

Ill

34

I

mm

procedure P (AI: in out DYNAMIC_VECTOR1; ... Am: in out DYNAMIC_VECTOPom;
IN_PARM: in IN_PARM.TYPE; PARM: in out PARM_TYPE) is

task type WORKER_TYPE is

entry COMBINE (FINAL_PARM: out PARM_TYPE);

end WORKER_TYPE;

WORKER: array(0..NUM_0F_WORKERS-I) of WORKER_TYPE;

task body WORKER_TYPE is

MY_INDEX, MY_SECTION_START, M_f_GPOtIN_SIZE, MY_NUM_ITERATIONS,

MY_NUM_T0_CALL: INTEGER;

... Place the declaration of the array MY_INDE%_TO_CALL and the local

... declarations of the source's P here.

... Place the declaration of procedure P_I of Figure 7 here.

begin -- WORKER_TYPE

... Assign appropriate value to task index MY_INDEX. (See [Bur85].)

... De_ermine the values of MY,SECTION_START, MY_GRAIN_SIZE,

... MY_NUM_ITERATIONS, MY_NUM_T0_CALL, and MY_iNDEX_T0_CALL.

-- Perform computations independent of the other workers:

P_I (MY_SECTION_START, MY_SECTION_START + MY_GRAIN_SIZE - I, INITIAL_PARM);

-- Combine local results eith the results from other vorkers:

if NUM_0F_WORKERS > I then

for I in I .. MY_NUM_TO_CALL loop

WORKER(MY_INDEX_TO_CALL(1)).COMBINE (FINAL_PARM);

... The false branch of the if of the source's P (after the recursive

... calls) is placed here, with each return statement replaced by a

... goto statement with t_rget END_FALSE_BRANCH.

<<END_FALSE_BRANCH>>

INITIAL_PARM :- PARM;

end loop;

if MY_INDEX = 0 then

PARM := INITIAL_PARM; -- result assigned to in out parameter

else

accept COMBINE (FINAL_PARM: out PARM_TYPE) do

FINAL_PARM :- INITIAL_PARM;

end COMBINE;

end if;

else

PARM := INITIAL_PARM; -- result -assigned to in out parameter

end if;

end WORKER_TYPE;

begin -- P

null; -- activate the array of WORKERs

end P;

Figure 9: Translation of Diva Procedure for MIMD Shared Memory Computer

35

I

mm

mm

procedure FIND_SUM (A: in DYNAMIC_VECTOR; SUM: out INTEGER) is

task type WORKER_TYPE is

entry COMBINE (FINAL_SUM: out INTEGER);

end WORKER_TYPE;

WORKER: array(O..NUM_0F_WORKERS-1) of WORKER_TYPE;

task body WORKER_TYPE is

MY_INDEX, MY_SECTION_START, MY_GRAIN_SIZE, MY_NUM_ITERATIONS,

MY_NUM_TO_CALL: INTEGER;

... Place the declaration of the array MY_INDEX_TO_CALL here.

INITiAL_SUM, FiN_AL_S_: INT_ER_ _

procedure FIND_SUM_I (FIRST, LAST: in INTEGER;
SUM: out INTEGER) is

MID: INTEGER;

MY_SECTION_LEN: INTEGER := LAST - FIRST + I;

INITIAL_SUM, FINAL_SUM: INTEGER;

begin -- FIND_SUM_I _ = :
if MY_SECTION_LEN <= MY_NUM_ITERATIONS then

SUM :- A(FIRST);

for I in FIRST + I .. FIRST + MY_SECTION_LEN - I loop

INITIAL_SUM :- SUM;

SUM :- A(I);

FINAL_SUM :- SUM;

SUM := INITIAL_SUM + FINAL_SUM;

end loop;

else

MID := (FIRST + LAST) / 2;

FIND_SUM_I (FIRST, MID, INITIAL_SUM);

FIND_SUM_I (MID + I, LAST, FINAL_SUM);

SUM := INITIAL.SUM + FINAL_SUM;

end if;

end FIND_SUM_I;

-- limits of range

Figure 10 (continued on next page)

i

U

I

I

mm

I

I

Z
i

I

u i

mm

36 []

I

l
!
II

=___

begin -- WORKER_TYPE

... Assign appropriate value to task index MY_INDF/. (See [Bur85] .)

... Determine the values of MY_SECTION_START, MY_GRAIN_SIZE,

... MY_NUM_ITERATIONS, MY_NUM_TO_CALL, and MY_INDEX_TO_CALL.

-- Perform computations independent of the other workers:

FIND_SUM_! (MY_SECTION_START, MY_SECTION_START + MY_GRAIN_SIZE- I,

INITIAL_SUM) ;

-- Combine local results with the results from other workers:

if NUM_OF_WORKERS > I then

for I in I .. MY_O_TO_CALL loop

WORKER (MY_INDEX_TO_CALL (I)). COMBINE (FINAL_SUM);

SUM :- INITIAL_SUM + FINAL_SUM;

INITIAL_SUM :- SUM;

end loop;

if MY_INDEX - 0 then

SUM :- INITIAL_SUM; -- result assigned to in out parameter

else

accept COMBINE (FINAL_SUM: out INTEGER) do

FINAL_SUM :- INITIAL_SUM;

end COMBINE;

end if ;

else

SUM :- INITIAL_SUM; -- result assigned to in out parameter

end if ;

end WORKER_TYPE ;

begin -- FIND_SUM

null; -- activate the array of WORKERs

end FIND_SUM;

Figure 10: Ada Code Produced by the Translation of Example 1

37

I

An optimizing compiler could enhance the efficiency of the sequential phase
of the target code by removing the use of many temporary variables. For ex-
ample, using data flow analysis an optimizing compiler could replace the code

in Figure 10 for

SUM :- A(F_I_ST) ;

for i in FIRST + 1 .. FIRST + MY_SECTIDN_LEN- 1 loop
INITIAL_SUM :- SUM;
SUM :- A(I);
FINAL_SUM :ffi SUM;

:S_ °- INITIAL._UM + FINAL'S_UM;::

end loop;

with the code for :

SUM := A(FIRST);

for I in FIRST + ! .. FIRST + MY_SECTIDN_LEN - 1 loop
SUM :- SUM+ A(1);

end loop;

since :th e value s of INITIAL_SUM ar, d_FINAL_SL_!_ are_ not needed after the loop.
Let n denote the length of tile dynamic parameters in the n0n_reCursive call

on p and suppose the true branch of the if of P takes time proportional to

tl, the false branch takes time proportional to t2, and the cost of parameter

passing takes constant time. Then it is easy to see that the execution of p takes

time proportional to t2(log n) + t, when executed with n processors using the

implementation described in this section:
The purpose of presenti_ig the _mpiementation algorithm in this section is

simpiy to make it clear that diva callscan be translated automatlcal[y so that the

resulting code can be executed by an MIMD computer for which each processor

performs independent work before results of different processors are combined.

More efficient implementations are certainly possible. For example, if several
diva calls use initial dynamic parameters of the same length, a single set of

worker processes would suffice for such calls, so the overhead of activating and

initializing such processes can be spread over several applications.
Some of the restrictions on the syntax of diva procedures are to support

an implementation strategy such as that given in this section. Note that when
PARM is used in a diva procedure, it is actually the values of local variables
INITIAL_PARM and FINAL_PARM that must be used in the recursive calls, and the

syntax prohibits assigning values to these local variables during initialization.

This syntactic restriction facilitates letting the workers execute the true branch

of the if without there being any recursive calls. (Note that, although the

purpose of PARM is to provide output from the diva call, PARM is permitted to

be an in out parameter. This is because Ada rules do not allow read access to
the value of an out parameter so restricting PARM to being an out parameter

would sometimes require a large number of extra local variables.)

38

l

I

am

I

mm

I

m

_=

m !

m i

I

!

i

am

m

n

Since the value of PARMis not used in the recursive calls, IN_P_ is necessary

to permit non-dynamic input information to be communicated to each activation

of the true branch of the if. Such input to a diva procedure can include a table
of initialization information, computed within an encapsulating procedure (of

the kind mentioned at the beginning of Section 4) using the value of other

non-dynamic inputs. Note that the only actual argument in the recursive calls

on P that can play the role of IN_PAI_ is IN_PAP_ itself, so the value of this

parameter is the same for each activation of a particular nonrecursive call on
the diva procedure and thus the executions of the true branch can take place

without there being any recursive calls.

8.2 Translation for Distributed Memory

The sample target code given in Figure 9 assumes the shared memory model

of parallel computing; for example, the vectors used in the translated diva pro-
cedure are nonlocal to the workers. When distributed memory is used, a large

vector, such as a vector corresponding to a dynamic parameter, should be main-
tained as an ordered collection of local arrays within the local memories. Other

nonlocal data used in the target code of Figure 9 can be replicated on local

memories. The message passing to implement such local arrays and replicated

data should be accomplished prior to the beginning of execution of the diva

call whenever possible. Permitting distributed memory computers to be pro-

grammed at a level supporting the illusion of shared memory is a related but
separate research problem that is being investigated by numerous researchers;

for example, see [CK88, KMR90, Li86, RSW88, SCMB90]. Thus the focus of
this section is on activities within thediva call itself, rather than on distributing

vectors and other data among the local memories.

The target code given in Figure 9 can be modified for distributed memory as
follows. For each i in 1..m, witlfin each worker declare a local array LOCAL_Ai

having the range

MY_SECTION_START .. MY_SECTION_START + MY_GRAIN_SIZE - 1

and base type BASE_TYPEi. The values of the corresponding slice of A£ should

be assigned to L0CAL_Ai and use of Ai should be replaced by L0CkL_Ai. A local
variable L0CAL_IN_PARM corresponding to II_ PAI_H should similarly be declared
and used. All use of the Ada rendezvous should be implemented by message

passing and the two assignments of INITIAL_PAR}[to PARM should be replaced

by code that sends the value of INITIAL_VALUE to the executor of the diva

call. Finally, if any of the dynamic parameters are out (or in out and a value

is assigned) the new value of the corresponding vector should be reflected in

changed values of local arrays.
Two of the restrictions on the syntax of a diva procedure facilitate the kind

of implementation given in this section. The prohibition on accessing nonlocals
from within a diva procedure reduces the dependence of Figure 9 on the shared

39

D

memory model of parallel computing and the restriction on accessing a dynamic
parameter within the false branch of the if after the recursive calls permits a
processor to execute this code without having to access components of such
an array, which may be outside the local memory of the processor. It is no
violation of the syntax rules for IN_PAP, M_TYPE to be a named array type with
unconstrained range. However, since parameter passing for an array may be
implemented by copy [Uni83, 6.2.7], the Ada programmer will realize that it
could be quite costly to use such a parameter to get around the restriction on
accessing dynamic parameters mentioned at the beginning of this paragraph.

8.3 Translation for SIMD Computers

A modification of the targ-etcocie in-l_igure 9 produces code for SIMD computers,

such as the ICL DAP [ICL80, Per87] and the Connection Machine [HS86], that
permit data to be shifted from processors with higher processor numbers to
processors with lower numbers by shifts that are powers of 2. This modification
is straightforward since the message passing in Figure 9 can be replaced by
shifting. In this section we assume that the length of the initial actual arguments
corresponding to the dynamic parameters is a power of 2 and is at least as large
as the number of processors. -

Let the notation

SHIFT (<data>, <target_variable>, <distance>) ; __

represent a shift, where the value of <data> is to be shifted to the local variable
<target_variab!e> 0f the processor whose index is <dist_ance> lessthanthat
of the processor executing the instruction and assume that processors told to
shift data to a processor whose index is less than 0 execute no-op's during the
clocl_ cycles 'when the remaking p-_cessors are'=executlng t_e shift.- -

The modification can be described as follows. The translator should assign
the same value to each instance of MY_GRAIN_SIZE, the same value to each

instance of MY_NUM_ITERATIONS,and logo of the number of processors to each

instance of My NUM...0FCALLS.Remove the declaration of NY_INDEX_T0_CALL
and the determination of its value from the target code. Replace the lines

!

z
I

mm

m

I

B

l

m
I

m
m

m

m
I

i

m

m

I

g

z

m

40

z -

for I in 1 .. MY_NUM_TO_CALL loop

WORKER(MY_INDEX_TO_CALL(I)).COMBINE (FINAL_PARM);

... The false branch of the if of P (after the recursive calls)

... is placed here, vith each return statement replaced by a

... goto statement eith target END_FALSE_BP_NCH.

<<END_FALSE_BRANCH>>

INITIAL_PAP_I :- PA_;

end loop;

if MY_INDEX = 0 then

PARM :- INITIAL_PARM; -- result assigned to in out parameter

else

accept COMBINE (FINAL_PAKM: out PARM_TYPE) do

FINAL_PARM :- INITIAL_PAKM;

end COMBINE;

end if;

with the lines

SHIFT_AMOUNT :I 1;

for I in 1 .. MY_NUM_TO_CALL loop

SHIFT (INITIAL_PAKM, FINAL_PARM, SHIFT_AMOUNT);

¢.. The false branch of the if of P (after the recursive calls)

... is placed here, vith each return statement replaced by a

... goto statement ,ith target END_FALSE_BRANCH.

<<END_FALSE_BRANCH>>

INITIAL_PARM := PAKM;

SHIFT_AMOUNT := SHIFT_AMOUNT * 2;

end loop;

if MY_INDEX - 0 then

PAPJ4 := INITIAL_PARM; -- result assigned to in out parameter

end if;

Of course this code is to be executed in SIMD fashion. For example, when
a block of the code is a branch of an if statement, those processors whose
local data dictates not performing the branch would execute no-op's while the

remaining processors execute the branch. For many diva procedures, such blocks
of code occurring within the true and false branch of the outer if of the diva

procedure contain just a single assignment statement, n Thus the use of such
no-op's would not be as extensive for these diva procedures as it would for

executing typical MIMD style code on an SIMD architecture.

8.4 The Independence of Logical Correctness from Imple-

mentation Details

A variety of implementation possibilities can be used for implementing diva
calls. As in Section 7, diva calls can be implemented sequentially using recur-

12Recall the observation about conditional expressions made after Example 2 in Section 4.

41

m

sion based on choosing division points at the middle, using a loop based on

choosing division points just before the end, using a combination of these two

options, or using another option. Diva calls can be implemented on parallel

computers with a variety of grain sizes, with each processor using a sequential
implementation of diva calls before results are combined; combining of results

from different processors can be obtained through the use of a processor tree

with communication via access to shared memory (Section 8.1) or via message-

passing (Section 8.2), through the use of shifts (Section 8.3), or through the

use of another technique (such as pointer doubling [HS86]). Theallocation of

processors_for t_e executioff-o_t-he _]iva.-ca_l caiilJe eitqaer-sta-t]-c--oi _]ynarnle and

tolerance for faulty channels can be programmed into a parallel implementation,

since there are n - 1 possible choices for division point for vectors of length n.

Finally, when multiple processors are used, they need not be identical.

As slmwn in Section 5, all implementation issues are abstracted away from

the text of a diva procedure, so that in verifying the logical correctness of a
diva procedure a programmer is allowed to think at a simpler, higher-level of

abstraction. Concerns about implementation details should be orthogonal to

concerns about logical correctn_. I_la_p_!eme_ntation detail.can b_e specified
independently as qualifiers in the compilation command. Such implementation
details coUld help obtain more efflcient_use of the target computer, yet the source

code would retain the existing advantages of diva procedures relating to logical

simplicity and portability. _ :

I

m

I

m

m
I

m

m

m -

I

I

I

I

I

I
I

I

-.) _:

5:LL : : : 7y_x ::: ; : : _ ,

42

m -

! --:

M

m

m

1ram

w

m

9 COMPARISON WITH REDUCTION OP-

ERATORS

Connection Machine Lisp [SitS6] and Paralation Lisp [Sab88], recent innovative
and unconventional languages for parallel computing, permit the programmer

to reduce a vector V using a programmer-defined function/. Such a reduction

can be implemented in log time on a suitable parallel computer, assuming that

each call on the function takes constant time. The technique used is to define

a binary function / (that takes two values of the base type of V and returns
a value of the base type of V) and then to use f and V as arguments in a

call on a general reduction operator. Note that, like the use of diva procedures,

such a computation can be programmed without requiring that the programmer

consider parallelism. Other approaches, such as that of iPSC/2 Fortran and C

lint89] are only permitted within parallel code and assume a particular target
architecture. 13

To illustrate this technique, consider computing the number of times a term

appears in a finite sequence S that is greater than the next term of the se-

quence. (Recall that this was accomplished in Example 2 using the diva proce-
dure COUNT_RUNS.) The major steps, using Ada syntax, would be:

1. Define a type

type ANSWER_TYPE is

record

COUNT,
FIRST,

LAST: INTEGER;

end record;

2. Declare a new vector

V: array(S'llANGE) of ANSWER_TYPE;

3. Initialize the components of V using code similar to the true branch of the
if in COUNT_RUNS as well as using the corresponding values of S.

4. Define a function subprogram f that takes two arguments of type ANSWER_TYPE

and returns a value of type ANSWER_TYPE using code similar to the false

branch of the if ill COUNT_RUNS.

5. Apply the general reduction operator to reduce V using f.

13In addition, the iPSC/2 software requires that] be commutative, but this requirement

can be overcome [Cha].

43

B

A comparison of diva algorithms with general reduction operators can be
summarized as follows:

1. The use of recursion is well-understood by the sequential programmer.

Thus the use of a diva procedure requires that the programmer learn no

new semantic rules, except for those relating to the use of the nondeter-
ministic divide. But the sequential programmer can view the semantics

of the nondeterministic divide as being simpler than usual divide-and-

conquer programming: there is no need to specify a division point if the

choice of division point doesn't matter.

2. A__se_par_a_teproo f of associativity of f n___d npt be given when a diva
procedure is used, since the associativity of f follows from the pioof that

the diva procedure returns the unique value specified by the procedure,

as shown in Section 6. Oil the other hand, when a general reduction

operator is used, a separate proof of the associativity of f is_nee_deal, As
shown in Section 6/suchapr_f0f assoclativ_ty, when car:riedout:using a

straightforward case analysis based on the proof of correctness of a single

application of f, requires p4 cases, where p is th_numberof c_es usedjn

proving the correctness of a s!ngle application of f. Other approaches can
also be significantly more complex than proving the correctness of a diva

procedure.

Confronted with such complex!ty when usi_g agenera ! reduction operator
in a program, some programmers may be tempted to assume associativ-

ity, thereby increasing the risk of error. While such a program may yield

correct answers when tested, the program may in fact rely on a particu-

lar ordering of the combining of partial results that will change, such as
when the underlyiag operating system is changed or when the program

is ported to a different computer. It is conceivable that such a program-

ming error could occur with even as simple an application as ¢0UIIT_RU_$.

For example, suppose the ordering used by the underlying implementa-
tion had the effect of combining the component values of V from left to

right. Then a programmer using the approach Of Figure il would obtain
correct results and might assume naively that "counting runs is obviously

associative". But other underlying implementations would not always give

correct results. (Consider, for example, what would happen if the compo-
nent values of $ were 20, 10, and 30 and the underlying implementation

combined results from right to left.)

3. It is unnatural to include the requirement of associativity in the specifica-
tion of a_ function, since in t|ie context of such a specification the function

operates on just two values.

4. As discussed in [Chag0b], a proof technique based on strong induction can
be used to prove the associatlvity of f using the same number:0f cases as

44

m

m

i

i

I

z

!

z

I

i

m

z

i

i

m
m
i

I

m

m

m_

m

I

l :

Detine a type ANSWER_TYPE as

type ANSWER_TYPE is
record

COUNT,

VALUE: INTEGER ;

end record;

initialize V so that for all I

V(1).COUNT := O;

V(I).VALUE := S(1);

and apply a general reduction operator

to reduce V using the function:

B

function f (X, Y: ANSWER_TYPE) return=A_S_'ER_TYPE is

ANS: ANSWER_TYPE:

begin

if X.VALUE > Y.VALUE then

ANS.COUNT := X.COUNT + Y.COUNT + 1;

else

ANS.COUNT := X.COUNT + Y.COUNT;

end if ;

ANS.VALUE :* Y.VALUE;

return ANS ;

end f ;

Figure i0: A Simple but Incorrect Approach to Counting Runs

,

the proof of tile corresponding diva procedure. However, typically f op-

erates on and returns records, where the initial sequence of such records

that is being reduced is related to, but different from, the sequence of in-

terest. Thus typically two sequences must be referred to within the proof

of associativity. Additional applications are possible if the assoeiativity

requirement is generalized to a requirement that the function simply be as-

sociative relative to the sequences of interest [Chag0b]. Such a requirement

involving a sequence is even less natural to include in the specification of

the function.

Strong induction can provide a simple approach to verifying program cor-

rectness for the kind of application s considered in this paper, as illustrated

in Section 5. Such simple use of strong induction relies on a simple con-

45

!

ceptualization that larger objects are composed of smaller objects. To ad-

equately support such use of strong induction, the programming language
should make such a conceptualization clear to the programmer and this

conceptualization should be more abstract than implementation-specific

concepts, since for portability a proof of program correctness should be in-

dependent of a particular implementation whenever possible. Diva proce-
dures provide just such a simple, yet abstract, conceptualization; namely,

the conceptualization of the nondeterministic divide. On the other hand,

when a general reduction operator is used, no such conceptualization is

made clear by theform in which the technique is expressed.

6. Whenever possible the form in which a technique is expressed within a

programming language should remind the programmer of the underlying
assumptions of the technique, even if it does not provide a suitable concep-

tualization. As observed earlier, when a general reduction operator is used

the underlying implementation will assume the associativity of jr but this
technique does not provide assistance in proving associativity. Perhaps

more importantly, the language form for expressing a general reduction

operator does not make clear the associativity assumption itself nor an
equivalent to this assumption; the progra_er is required to remember

this assumption independently of the language form. The language form

for expressing a general reduction operator also does not make clear the

lack of any commutativity assumption on/. For example, knowing that
important assumptions about f are not made clear within the language

form, a programmer using a general reduction operator could worry that

the result of applying f to the component v_ of v w_th odd _ndexes and
the result of applying f to tlie component valu_=oi'V_with even indexes

might be found separately and then combined, thereby precluding many

of the applications discussed in this paper.

7. Programmers Sli0uid be_otivated by at]east an informal proof of cor-

rectness of strategy. Both informal and formal proofs of correctness are, of

course, subject to humanerroff. _Vhen it is clear that the result calculated
by a particular diva call is independent of tiie:clioice of aivis_on points, a

diva call can be (partially) tested and debugged on a sequential computer

using small in!tial dynamic parameters with division points se!ected at the

middle of the dynamic p_ameters, an environment invo!ving debugging
tools familiar to the sequential programmer.

8. As explained at the beginning of this section, general reduction operators

require not onlythat .fbe a fui_ctlon, Dut_ also that the parame-terss of] be

two values of the result type of f. This requirement creates a disadvan-

tage of using such operators for applicatio !n Which_ values need to be

used by tl_e function that the funct!on s_hguld +not m_odify-Cons]tier, for
example, the diva procedure L00KUP, mentioned after Example 4, which

46

=
I

m

m

m

m

I

z

I

m

m

i

i
m

[]

E+ +
i +

m

++

III

i

=

m

m

.

uses an in parameter to store the value of a search key to be used in an

unordered table lookup. When a general reduction operator is used for

this application, either a field containing the search key would need to be
included in the result type, even though this value must not be changed by

a call on f, or else a nonlocal access from within f must be used to obtain
the value of the search key. In either case, an important fact known to the

programmer, that the value of the search key should not be inadvertently
modified, is being withheld from compilers and syntax-directed editors.

Using an in parameter in a diva procedure makes this fact explicit.

While it is always possible to replace procedures by functions in any lan-
guage permitting the value returned by a function to be an arbitrary
record, the widespread use of procedures demonstrates their greater natu-
ralness for many applications. As mentioned in Section 3, the requirement
in this paper that diva procedures have just a single non-dynamic out or
in out parameter is made only to simplify the exposition of this paper
and should be removed in a construct designed for a programming lan-

guage, since it is unnatural to be forced to use a record simply to satisfy
an arbitrary restriction. For instance, in Example 4 this restriction forces

tlle programmer to decide among three alternatives: to use an assignment
statement like

Y_VALUE := ANSWER.CORR;

in tile body of code that includes the diva call, to use an encapsulating

procedure simply to hide this detail, or to use the field and record name
in all later code accessing the result of the diva call. 14 A diva construct

designed for a programming language could allow the elimination of such
awkwardness, but the use of a function in a general reduction operator

would require a record for more than one result value.

10. Only a single vector is reduced by the application of a general reduction

operator. Within a conventional semantic model it is thus necessary to
create a new vector of records solely to satisfy this requirement for many

applications. The disadvantage of creating such typically large ad-hoc

vectors, in addition to the awkwardness of using records when none may

be required, is discussed at the end of Section 4. Such ad-hoc vectors
are unnecessary when a diva procedure is used, since multiple dynamic

parameters are permitted. 15 In addition, the effect of assigning initial

_4Even if the result of the diva call is used just once or twice, using a fidd and record name

may not be the natural approach. Consider, for example, finding the variance of a vector by

using a single diva procedure to return both the the sum of the components of the vector and

the sum of the squares of components; the natural approach would be to have two parameters

for the sums rather than a single record parameter with fields for the two sums.

lSlq.ecall that such ad-hoc vecto_ can also be avoided by using the noteworthy, unconven-

tional semantics of Paralation Lisp.

47

m

values to the components of such an ad-hoc vector can be achieved in

the true branch of the if of the diva procedure and this action can be

implemented in parallel.

11. Using a general reduction operator can force the programmer to violate
the levelof _bstr_ct_-n- _ea]ly prOvidecl_ya ffincti0n inn programming

: _ language, since:_n:deflning] the progra_er often :must::focus on the

particular use of .f by a general reduction operator.

m

B

!

I

m

!

I

m
I

!

I

!

I

I

48
U

m
U

w

10 CONCLUSIONS

The importance of developing effective ways to program parallel computers has

been widely acknowledged. All too often such computers are programmed by

thinking in terms of "who does what when". The complexity of such a low

level approach can cause the programmer to overlook race conditions, possible
deadlocks, and other problems. One solution to the problem of programming

parallel computers is to provide high-level concepts for sequential programming

that parallelize well.

This paper proposes and investigates the nondeterministic divide as such

a high-level concept. The use of the nondeterministic divide can be viewed

by the sequential programmer as being simpler than usual divide-and-conquer

programming: there is no need to specify a division point if the choice of division

point doesn't matter.

Although the purpose of this paper is to propose a language concept, rather

than a specific language construct, for concreteness the concept is studied here in
terms of one possqble Consiru_t, the diva procedure call. Diva calls are shown to

have the major implementation advantages of general reduction operators, due

to an intimate relationship between a diva call and associativity, yet to be free of

numerous undesirable features of general reduction operators and thereby to en-

hance program correctness and abstraction. The undesirable features of general

reduction operators include the lack of a simple, implementation-independent

conceptualization for the combining of fimction values, the difficulty of showing
that a nontrivial function is associative in the absence of a suitable conceptu-

alization, the fact that the language form for expressing a general reduction

operator does not make underlying assumptions clear to the programmer, the
fact that information known at the programmer's level of abstraction must be

withheld sometimes from compilers and syntax-directed editors even though
such information could be used to uncover errors, and the frequent necessity

of using records to combine variables into a single object regardless of whether

such use of records is a natural and appropriate abstraction. In addition, unlike

general reduction operators, diva calls can be used to assign computed values

to the components of a vector.
Diva calls have been shown to be relatively easy to verify, applicable to a

variety of applications, and implementable on parallel computers in log time.
Yet diva calls are at a higher level of abstraction than such parallel program-

ming issues as MIMD versus SIMD, the workload of processors, and distributed
versus shared memory. Thus diva calls provide one approach to simplifying the

programming of parallel computers.

49

m
M

In deciding whether to include a notation or construct supporting the non-

deterministic divide within a programming language, one is reminded of the
advice in Hoare's CSP ar_ticle [-[Hoa78]: :

Where a more elaborate construction ..: isfrequently useful,
has properties which are more simply provable, and c_ alsp be ira:

plemented more efficiently than the general case, there is a strong

reason for including in a programming language a special notation
for that construction.

Additional research being pursued by the author includes the extension of

diva procedures to permit the use of multidimensional dynamic parameters and

the continued enhancement of the current translator for a language incorporat-

ing diva procedures.

ACKNOWLEDGEMENTS: The author is grateful to Greg Morrisett and

Jeff Michel for serving as assistants on this language design project for four

years. Terry Pratt critiqued an earlier version of this paper and the author

is also grateful to Jim French, Paul Reynolds, and Dana Richards for helpful
advice.

m
m

m

u

m

I

I

m

m

z
m
m

I

B

m

im

L_

Is

5O

m

m

Z

m
g
m

M

REFERENCES

[BST89] Bal, It. E., Steiner, J. G., and Tanenbaum, A. S. Programming

languages for distributed computing systems. Computing Surveys. 21, 3 (Sept.

1989), 261-322.

[Bar84] Barnes, J. G. P. Programming in Ada. Addison-Wesley, Reading,
Mass., 1984.

[Ben86] Bentley, J., Programming Pearls. Addison-Wesley, Reading, Mass.,
1986.

[Bur85] Burns, A. Efficient initialisation routines for multiprocessor systems

programmed in Ada. Ada Letters, 5, 1 (July - Aug 1985), 55-60.

[CK88] Callahan, D. and Kennedy, K. Compiling programs for distributed
memory multiprocessors. J. of Supercomputing, 2, (1988), 151-169.

[Cha86] Charlesworth, A. The design and implementation of a preprocessor
for Ada to provide support for the multiway accept, NASA Langley Research

Center grant proposal NAG-I-7741 Dec. 1986.

[Cha87] Charleswortll, A. Tile multiway rendezvous. ACM Trans. Program.

Lang. Syst., 9, 2, (July 1987), 350-366.

[Cha89] Charleswortl_, A. On a class of divide and conquer algorithms. Pre-
liminary report. Abstracts of the Amer. Math. Soc., 10, 6 (Nov. 1989), 492.

[Cha90a] Charlesworth, A. Adam Language Reference Manual, preliminary

version 7/30/90, Dept. Math. and Comp. Set., U. of Richmond, Va., July 1990.

[Cha90b] Charlesworth, A. A characterization of associativity, Tech. Rep.
IPC-TR-90-007, Inst. for Parallel Computation, U. of Virginia, Charlottesville,

Nov. 1990.

[Cha] Charlesworth, A. Programming a class of divide-and-conquer algo-
rithms on the Intel iPSC/2. Paper in progress.

[Da186] Dally, -W. J. A VI, SI A rchitecture for Concurrent Data Structures.
Ph.D. Dissertation, Dept. of Computer Science, Calif. Instit. of Tech., Tech.

Rep. 5209, 1986.

51

[Dij59]Dijkstra,E.A noteontwoproblemsin connexion with graphs. Nu-
mersiche Mathemalik 1 (1959), 269-271.

[Dung0] Duncan, R. A survey of parallel computer architectures. Computer

23, 2 (Feb. 1990), 5-16.

[Gri81] Gries, D. The Science of Programming. Springer-Verlag, New York,
1981.

[HS86] ttillis, W. D. and Steele, G. L., Jr. Data parallel algorithms. Comm.

ACM, 29, 12, (Dec. 1986), 1170-1183.

[Hoe62] Hoel, P. G. Introduction to Mathematical Statistics, John Wiley,
New York, 1962.

[Hoa78] Itoare, C. A. R. Communicating sequential processes. Comm. ACM,
21, 8, (Aug. 1978), 666-677.

[ICL80] Internatioiml-Computers Ltd. DAP Fortran language. ICL Techni-
cal Pub. 6755, i980.

lint89] Intel Corporation, iPSC/2 Programmer's Reference Manual. Beaver-

ton, Or., Oct. 1989.

[Ive62] Iverson, K. E., A Programming Language.

Inc., New York, 1962.

John Wiley and Sons,

[KMR90] Koebel, C., Mehrotra, P., and Rosendale, J. V. Supporting shared
data structures on distributed memory architectures: SIGPLAN NOTICES, 25,

3 (Mar. 1990), 177-186. (Proc. Second ACM SIGPLANSymp. on Principles
and Practice of Parallel Programming)

[Knu73] Knuth, DI El The Art of Computer Programming, Vol. 3: Sorting

and Searching. Addison-Wesley, Reading, Mass., 1973.

[Li86] Li, Kai. Shared Virtual Memory on Loosely Coupled Multiprocessors.

Ph. D. thesis, Yale University, New Ilaven, Conn., Sept. 1986.

[MT86] Mullender, S. J. and Tanenbaum, A. S. The design of a capability-
based distributed operating system. Computer J., 29, 4 (1986), 289-300.

[Per87] Perrott, R. H. Parallel Programming. Addison-Wesley, Reading,
Mass., 1987.

I

b

: =

i

i

i

i

alp

!

i ;

J

52
zm

Z
m

I

[Pri57] Prim, R. C. Shortest connection networks and some generalizations.

Bell System Tech. J. 36 (1957), 1389-1401.

[RT86] Rettberg, R. and Thomas, R. Contention is no obstacle to shared-

memory multiprocessing. Comm. ACM, 29, 12 (Dec. 1986), 1202-1212.

[RSW88] Rosing, M., Schnabel, R.. B., and Weaver, R. P. Dino: Summary

and examples. Proc. Third Conf. on Hypercube Concurrent Computers and
Appl. (1988), 472-481.

[RSL74] Rosenkrantz, D., Stearns, lq.., and Lewis, P. Approximate algo-

rithms for the traveling salesperson problem. Proc. 15th Annual IEEE Syrup.
on Switching and Automata Theory. 1974, 33-42.

[Sab88] Sabot, G. The Paralation Model: Architecture-Independent Parallel

Programming. hilT Press, Cambridge, 1988.

[SCMB90] Saltz, J., Crowley, K., Mirchandaney, R., and Berryman, H. Run-

time scheduling and execution of loops on message passing machines. 3". of Par-

allel and Distributed Computing, to appear.

[SH86] Steele, G. L., Jr. and tlillis, W. D. Connection Machine Lisp: Fine-

grained parallel symbolic processing. Proc. 1986 ACM Conference on Lisp and
Functional Programming. Aug. 1986, 279-297.

[Qui83] Quinn, M. 3. The Design and Analysis of Algorithms and Data Struc-

tures for the Efficient Solution of Graph Theoretic Problems on MIMD Com-

puters. Ph. D. Dissertation, Dept. of Computer Science, Wash. State Univ.,
Pullman, Wash., 1983.

[Uni83] United States Department of Defense. Reference Manual .for the
Ada Programming Language. ANSI/MIL-STD-1815A-1983, American National

Standards Institute, 1983.

[YTL86] Yew, P. C., Tzeng, N. S., and Lawrie, D. H. Distributing hot spot

addressing in large-scale multiprocessors. Proc. of the 1986 Intl. Conf. on

Parallel Processing IEEE Press, New York, 1986, 51-58.

53

m

m
Ill

m

Ill

m

ID

mR

m

I

_mm

m

I

m

I

mm
m

mm

ii

!
m
i

ii

u

m

Ul

m

w

INSTITUTE FOR PARALLEL COMPUTATION

RECENT TECHNICAL REPORTS

87-00I Basic Database Concepts in ADAMS (Advanced Data Manipulation System): Language

Interface for Process Service. J.L. Pfaltz, S.H. Son, J.C. French, P.K. Baron, D.J. Kirks, and R.

Orlandic, November 30, 1987.

m

|

m

o ,

k-d

i

88-001 Compact O-Complete Trees: A New Method for Searching Large Files. R. Orlandic and

J.L. Pfaltz, January 26, 1988.

88-002 Reliability Mechanisms for ADAMS. S.H. Son and J.L. Pfaltz, March 20, 1988.

88-003 Scoping Persistent Name Spaces in ADAMS. J.L. Pfaltz, J.C. French and J.L. Whitlatch,

June 28, 1988.

88-004 Implementing Set Operators Over Class Hierarchies. J.L. Pfaltz, August 5, 1988.

88-005 hnplernentation of an ADAMS Prototype: The ADAMS Preprocessor (AP). C. Klurnpp

and J.L. Pfaltz, August 9, 1988.

88-006 The 1988 Parallel Sorting Bibliography. D. Richards, August 25, 1988.

88-007 A Spectrum of Options for Parallel Simulation. P.F. Reynolds, September 9, 1988.

88-008 A Neural Network Implementation of a Correspondence Processing Algorithm. A.

Barker, D.E. Brown and W. Martin, October 9, 1988.

88-009 A Prototyping Environment for Distributed Database Systems: Functional Description.

S.H. Son, J. Rather and C-H. Chang, October 9, 1988.

88-010 A Global Time Reference for Hypercube Multicomputers. J.C. French, October 10, 1988.

88-011 A Procedure for Generating Source Weights in Group Consensus Problems. D.E. Brown

and M. Mostaghimi, December 12, 1988.

m

89-001 A Bibliography of Heuristic Search. B.S. Stewart, January 30, 1989.

89-002 The ADAMS Database Language. J.L. Pfaltz, J.C. French, A.S. Grimshaw, S.H. Son,

P.K. Baron, S. Janet, A. Kim, C. Klumpp, Y. Lin, L. Loyd, February 28, 1989.

89-003 A Parallel Heuristic for Quadratic Assignment Problems. C.L. Huntley and D.E. Brown,

March 16, 1989.

89-004 A Method for the Evaluation of Correlation Algorithms. A.R. Spillane, C.L. Pittard, Jr.

UP

m
m

m

II

i

mm

I

m

mm

m
mi

I

m

[]

m

II

mt
w

B

im
[]

II

I

t__

g

m

II

i

and D.E. Brown, April 1, 1989.

89-005 A Justification for Applying the Principle of Minimlan Relative Entropy to Information

Integration Problems. D.E. Brown, April 18, 1989.

89-006 Design, Analysis and Applications of Compact O-Complete Trees. R. Orlandic, May 22,
1989.

89-007 Performance Evaluation of Multiversion Database Systems. S.H. Son and N. Haghighi,

July 25, 1989.

89-008 The ADAMS Storage Management System. S.A. Janet, Jr., August 10, 1989.

89-009 The ADAMS Preprocessor. P.K. Baron, December 4, 1989.

89-010 Implementation of the ADAMS Database System. J.L. Pfaltz, J.C. French, A.S.
Grimshaw, S.H. Son, P.K. Baron, S. Janet, Y. Lin, L. Loyd, R. McElrath, December 11, 1989.

89-011 Comparative Analyses of Parallel Simulation Protocols. P.F. Reynolds, Jr., C. Weight

and J.R. Fidler, December 6, 1989.

89-012 SPECTRUM: A Parallel Simulation Testbed P.F. Reynolds, Jr. and P.M. Dickens,

March 12, 1989.

m 90-001 Uncertainty Management with Imprecise Knowledge with Application to Design. D.E.

Brown and W.J. Markert, January 4, 1990.

90-002 ASSET: A Simulation Test Bed for Evaluating Data Association Algorithms. D.E.

Brown, C.L. Pittard, and A.R. Spillane, January 22, 1990.

90-003 SRADS With Local Rollback. P.M. Dickens and P.F. Reynolds, Jr., January 22, 1990.

90-004 Genetic Algorithms for Feature Selection for Counterpropogation Networks. F.Z. Brill,

D.E. Brown and W.N. Martin, April 9, 1990.

90-005 The Nondeterministic Divide. Arthur Charlesworth, November, 1990.

90-006 Parallel Genetic Algorithms with Local Search. Christopher L. Huntley and Donald E.

Brown, September 3, 1990.

90-007 A Characterization of Associativity. Arthur Charlesworth, November 1990.

mm

m

i

m
mm

ii

h_

m
II

m
I

I

IB

m
m
I

m

m
!
g

[]

II

mm

m

m
II

m

B

